• Title/Summary/Keyword: manufacturing cells

Search Result 455, Processing Time 0.029 seconds

Feasibility Assessment of New Hybrid Linear Motor Using Magnetostrictive Material

  • Kim, Jaehwan;Doo, Jae-Kyun;Kim, Jae-Do
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.26-30
    • /
    • 2001
  • This paper deals with the feasibility assessment of hybrid linear motor that operates based on self-moving cell concept. The moving cell is composed of Magnetostrictive actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses strong push force of Terfenol-D actuators and friction of the cells, it can essentially produce long stroke and large force. The overall performance of the motor was measured in terms of speed and force.

  • PDF

Minimizing the Number of Inter-Cell Movement of Parts with Consideration of a Machine-Cell Size (제한된 기계군의 크기하에서 부품의 이동을 최소로 하는 GT기법)

  • Park, Chang-Kyu
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.532-539
    • /
    • 1999
  • The first step to design a cellular manufacturing system is to make part-families and machine-cells. This process is called the machine-part grouping. This paper considers a machine-cell size when grouping machine-cells. By considering a machine-cell size, an unrealistically big size of machine-cell which may be caused by the chaining effect can be avoid. A heuristic algorithm which minimizes the number of inter-cell movement of parts considering a machine-cell size is presented. The effectiveness and performance of the proposed heuristic algorithm are compared with those of several heuristic algorithms previously reported. The comparison shows that the proposed heuristic algorithm is efficient and reliable in minimizing the number of inter-cell movement of parts and also prevents the chaining effect.

  • PDF

Synthesis and Photovoltaic Properties of Organic Photosensitizers for Application of Dye Sensitized Solar Cells (페노시아진을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyun Sik;Shin, So Yeon;Kim, Yeun Ji;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.119.2-119.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) are currently attracting wide spread academic and commercial interest for the conversion of sunlight into electricity because of their easy manufacturing process and high efficiency. The solar energy conversion efficiencies of DSSC are strongly dependent on dye molecules adsorbed on the TiO2 surface which used for photosensitization of sun light, since an excited state of dye could inject an electron into the conduction band of semiconductor. We have developed novel organic dyes which have phenothiazine moieties as an electron donor in their charge-transfer chromophore for application of DSSCs. We had synthesized a series of phenothiazine derivatives which have different wave length absorbing chromophore in the molecule with high molar extinction coefficient. The photovoltaic performance of DSSC composed of organic chromophores with broad wavelength absorption property were measured and evaluated by comparison with that of pristine ruthenium dye.

  • PDF

Synthesis and Photovoltaic Properties of Organo Dendritic Photosensitizers based on Carbazole for Dye-sensitized Solar Cells (신규 Carbazole 유도체의 합성과 이를 적용한 DSSC의 광전 변환 특성)

  • Jung, Daeyoung;Kim, Myeongseok;Yang, Hyunsik;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.119.1-119.1
    • /
    • 2011
  • Since Gratzel et al. reported the first efficient dye-sensitized solar cells(DSSCs) in 1991, they have attracted much attention due to their relatively high power conversion efficiency and potentially low cost production. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, the metal-free organic photosensitizers are strongly desired. The metal-free organic dyes offer superior molar extinction coefficients, low cost, and diverse molecular structures as compared to the conventional Ru-dyes, In this work, we have studied on the synthesis and characterization of the organo dendritic dyes containing different number of electron acceptor moieties in a molecule.

  • PDF

A Study of low cost and high efficiency Solar Cell using SOD(spin on doping) (SOD(Spin On Doping)법을 이용한 저가 고효율 태양전지에 관한 연구)

  • Park, Sung-Hyun;Kim, Kyoung-Hae;Mon, Sang-Il;Kim, Dae-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1054-1056
    • /
    • 2002
  • High temperature Kermal diffusion from $POCl_3$ source usually used for conventional process through put of a cell manufacturing line and potentially reduce cell efficiency through bulk like time degradation. To fabricate high efficiency solar cells with minimal thermal processing, spin-on-doping(SOD) technique can be employed to emitter diffusion of a silicon solar cell. A technique is presented to emitter doping of a mono-crystalline solar cell using spin-on doping (SOD). Moreover it is shown that the sheet resistance variation with RTA temperature and time fer mono-crystalline and multi-crystalline silicon samples. This novel SOD technique was successfully used to produces 11.3% efficiency l04mm by 104mm size mono-crystalline silicon solar cells.

  • PDF

Si Induced Polymer Based Alignment Layer for Liquid Crystal Orientations with High Electro-Optic Properties at Low Temperature (저온 공정의 Si을 이용한 PI 배향 막의 전기광학 특성 향상에 대한 연구)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.677-681
    • /
    • 2013
  • Apart from the deposition of alignment layer, alignment process needs to be involved for alignment of liquid crystal (LC) molecules. To simplify manufacturing process, several method were used such as rubbing, ion-beam irradiation, UV irradiation, and lithography. But, eventually it needs another treatment for LC alignment. Here, we suggested Si induced polyimide (PI) alignment layer at low temperature. Using this method, we are able to eliminate the alignment process and found that the alignment and electro-optic performance are much better than that of the rubbed PI LC cells. Compared to the rubbed PI cells, the response time was decreased by 70% and C-V characteristics have hysteresis-free.

Modeling and Intelligent Scheduling for FMC (FMC의 모델링과 지능형 스케쥴링)

  • 서기성;이노성;안인석;우승규;이규호;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.3
    • /
    • pp.31-40
    • /
    • 1993
  • This paper deals with the modeling and scheduling for FMC(Flexible Manufacturing Cells). The FMC system composed of unit or multi cells is capable of improving productivity with flexibility for machine. However, the properties of multiple jobs and various alternatives results in tne dynamic states which make system management very complex. The extended Peti nets are used to represent for complex properties of FMC which performs short-term scheduling and dynamic operational scheduling. The hierarchical control structure and integlligent scheduling through expert module are adopted for efficiency of FMC operations. The computer simulation reveals that intelligent scheduling method is better than heuristics in various performance indices.

  • PDF

A Genetic Algorithm for Manufacturing Cell Design Based on Operation Sequence (공정순서에 기초한 생산셀 설계를 위한 유전 알고리즘 접근)

  • 문치웅;김재균
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.123-133
    • /
    • 1998
  • A cell design model based on operation sequence is proposed for maximizing the total parts flow within cells considering the data of Process plans for parts, Production volume, and cell size. A relationship between machines is calculated on the basis of the process plans for parts obtained from process plan sheets. Then the machines are classified into machine cells using the relationship. The model is formulated as a 0-1 integer programming and a genetic algorithm approach is developed to solve the model. The developed approach is tested and Proved using actual industrial data. Experimental results indicate that the approach is appropriate for large-size cell design problems efficiently.

  • PDF

Compositional SIMS Depth Profiling of CIGS film

  • Kim, Gyeong-Jung;Hwang, Hye-Hyeon;Jang, Jong-Sik;Jeong, Yong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.367-367
    • /
    • 2011
  • CIGS solar cell with copper, indium, gallium and selenium is a second generation solar cells for the lowering of the manufacturing cost. The relative ratio of the four elements is one of the most important measurement issues because the photovoltaic property of CIGS solar cell depends on the crystalline structure of the CIGS layer. However, there is no useful analysis method for the composition of the CIGS layer. Recently, AES depth profiling analysis of CIGS films has been studied with a reference material certified by inductively coupled plasma optical emission spectroscopy. However, there are some problems in AES depth profiling analysis of CIGS films. In this study, the in-depth profiling analysis was investigated by secondary ion mass spectrometry (SIMS) depth profiling analysis. We will present the compositional depth profiling of CIGS films by SIMS and its applications for the development of CIGS solar cells with high efficiency.

  • PDF

Unleashing the Therapeutic Potential of CAR-T Cell Therapy Using Gene-Editing Technologies

  • Jung, In-Young;Lee, Jungmin
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.717-723
    • /
    • 2018
  • Chimeric antigen receptor (CAR) T-cell therapy, an emerging immunotherapy, has demonstrated promising clinical results in hematological malignancies including B-cell malignancies. However, accessibility to this transformative medicine is highly limited due to the complex process of manufacturing, limited options for target antigens, and insufficient anti-tumor responses against solid tumors. Advances in gene-editing technologies, such as the development of Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), have provided novel engineering strategies to address these limitations. Development of next-generation CAR-T cells using gene-editing technologies would enhance the therapeutic potential of CAR-T cell treatment for both hematologic and solid tumors. Here we summarize the unmet medical needs of current CAR-T cell therapies and gene-editing strategies to resolve these challenges as well as safety concerns of gene-edited CAR-T therapies.