DOI QR코드

DOI QR Code

Si Induced Polymer Based Alignment Layer for Liquid Crystal Orientations with High Electro-Optic Properties at Low Temperature

저온 공정의 Si을 이용한 PI 배향 막의 전기광학 특성 향상에 대한 연구

  • 김대현 (연세대학교 그린기술연구원)
  • Received : 2013.08.05
  • Accepted : 2013.08.12
  • Published : 2013.09.01

Abstract

Apart from the deposition of alignment layer, alignment process needs to be involved for alignment of liquid crystal (LC) molecules. To simplify manufacturing process, several method were used such as rubbing, ion-beam irradiation, UV irradiation, and lithography. But, eventually it needs another treatment for LC alignment. Here, we suggested Si induced polyimide (PI) alignment layer at low temperature. Using this method, we are able to eliminate the alignment process and found that the alignment and electro-optic performance are much better than that of the rubbed PI LC cells. Compared to the rubbed PI cells, the response time was decreased by 70% and C-V characteristics have hysteresis-free.

Keywords

References

  1. D. S. Seo, S. Kobayashi, and M. Nishikawa, Appl. Phys. Lett., 61, 2392 (1992). https://doi.org/10.1063/1.108174
  2. W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, Adv. Funct. Mater., 21, 3843 (2011). https://doi.org/10.1002/adfm.201101345
  3. M. Schadt, K. Schmitt, and V. Kozinkov, Jpn. J. Appl. Phys., 31, 2155 (1992). https://doi.org/10.1143/JJAP.31.2155
  4. J. Y. Hwang, D. S. Seo, J. Y. Kim, and T. H. Kim, Jpn. J. Appl. Phys., 42, 194 (2003). https://doi.org/10.1143/JJAP.42.194
  5. J. Janning, Appl. Phys. Lett., 21, 173 (1972). https://doi.org/10.1063/1.1654331
  6. Y. G. Kang, H. J. Kim, H. G. Park, B. Y. Kim, and D. S. Seo, J. Mater. Chem., 18, 21594 (2010).
  7. H, J. Na, J. W. Lee, W. K. Lee, J. H. Lim, H. G. Park, B. Y. Kim, J. Y. Hwang, J. M. Han, and D. S. Seo, Opt. Lett., 35, 1151 (2010). https://doi.org/10.1364/OL.35.001151
  8. H. G. Park, B. Y. Oh, Y. H. Kim, B. Y. Kim, J. M. Han, J. Y. Hwang, and D. S. Seo, Electrochem. Solid. St., 12, J37 (2009). https://doi.org/10.1149/1.3074331
  9. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegary, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature London, 411, 56 (2001). https://doi.org/10.1038/35075021
  10. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, Science, 292, 2299 (2001). https://doi.org/10.1126/science.1059866
  11. D. S. Seo, K. Araya, N. Yoshida, M. Nishikawa, Y. Yabe, and S. Kobayashi, Jpn. J. Appl. Phys., 34, L503 (1995). https://doi.org/10.1143/JJAP.34.L503
  12. J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100 (1985).