• Title/Summary/Keyword: manufacturing cell

Search Result 861, Processing Time 0.026 seconds

Study on Identification and Purification of Germanium-fortified Yeast (게르마늄강화효모의 게르마늄결합 단백질의 분리 및 확인에 관한 연구)

  • Lee, Sung-Hee;Lee, Sang-Kwang;Lee, Hyun-Joo;Yi, Yong-Sub;Park, Eun-Woo
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.55-59
    • /
    • 2006
  • This study was designed to investigate the optimum manufacturing condition of germanium-fortified yeast, and the binding properties of germanium (Ge) in germanium-fortified yeast. The nutritional optimum conditions were glucose 3.0 (w/v) %, yeast extracts 0.3 (w/v) % and peptone 0.5 (w/v) %, and the amounts of yeast cells were 67.4 mg/ml. And, the standard germanium-fortified yeast was produced under the condition at the ratio of yeast cell and germanium solution was 1 : 0.5 (50%), pH 6.5 and $35-40^{\circ}C$ during fermentation. In results of the identification, binding of germanium-protein showed structural difference between the inorganic Ge $(GeO_2)$ added during fermentation process and germanium-fortified yeast. Therefore, germanium-fortified yeast made by biosynthetic technology formed structurally safe organic germanium during fermentation process. Germanium-fortified yeast can be applied as a new functional material far the improvement of health, the prevention and treatment of chronic degenerative disease like cancer, and the enforcement of immune system.

Antimicrobial and Biogenic Amine-Degrading Activity of Bacillus licheniformis SCK B11 Isolated from Traditionally Fermented Red Pepper Paste (전통고추장에서 유해균 억제 및 Biogenic Amines 분해 능력을 가지는 Bacillus licheniformis SCK B11의 분리)

  • Kim, Yong-Sang;Jeong, Jin-Oh;Cho, Sung-Ho;Jeong, Do-Yeon;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.163-170
    • /
    • 2012
  • In order to inhibit the growth of pathogens and degrade biogenic amines during the fermentation of soybean products, an isolate with antimicrobial activity against pathogens and biogenic amine-degrading property was obtained from 83 traditionally fermented soybean products. The morphological and biochemical tests and the phylogenetic relationship among 16S rRNA gene sequences indicated that the isolate named as the strain SCK B11 was most closely related to Bacillus licheniformis. The cell-free supernatant of two day cultures was active against several pathogens including Enterococcus faecalis, Listeria monocytosis, Micrococcus luteus, Pseudomonas aeruginosa, Bacillus cereus, and Staphylococcus aureus. PCR analysis was conducted to determine relatedness to antimicrobial lantibiotics and biosurfactants produced by Bacillus spp., but showed negative for the genes encoding surfactin, lichenysin, and lichenicidine. Electron microscopic observation indicated that the antimicrobial agent seemed to attack the membrane of the pathogens, leaving the ghost or shrunken cells. The strain was found to degrade histamine by 72% and tyramine by 66% in the cooked soybean containing 5.3% of biogenic amine over 10 days of fermentation time. The use of selected strain would be a potential control measure in manufacturing traditionally fermented soybean products that are difficult to control pathogens and biogenic amine levels.

Study on the Optical Characteristics of the Green Phosphor for PDP Application (PDP용 녹색 형광체의 광 특성 개선에 관한 연구)

  • Han, Bo Yong;Yoo, Jae Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.150-156
    • /
    • 2009
  • Plasma Display Panels(PDPs) require to have improved luminous efficiency, low manufacturing cost, and high image quality to compete with other flat display devices such as Liquid Crystal Displays(LCDs) and organic light-emitting diodes(OLEDs). In addition, the diversity of product line-up may be needed for high market share. In this paper, the optical characteristics of typical green phosphor for PDP application are reviewed and the problem-based solution will be proposed. We also shortly describe the principle of 3D-PDPs which are promising. Then, the requirement of green phosphor for 3D-PDP application is summarized and research achievement, as of now, is described. The typical problems of $Zn_2SiO_4:Mn$ phosphor, which is the most well-known, are the negatively charged surface property and the long decay time, which leads to unstable discharge in green cell and afterimage. These problems were solved by coating the phosphor surface with metallic oxide. It was found that $Al_2O_3$ would be the best material for $Zn_2SiO_4:Mn$ phosphor. It gives longevity as well as low operating voltage due to the charging effect in green cells. Also, new phosphors, $(Y,\;Gd)Al_3(BO_3)_4:Tb$ and $(Mg,\;Zn)Al_2O_4:Mn$ phosphor are proposed for increasing the luminance and reducing the decay time, which are capable to apply for 3D-PDP application.

Preparation and Electrochemical Properties of Pr1-x (Sr, Ca)xCoO3 Cathode Materials for Zinc Air Batteries (아연공기전지용 Pr1-x (Sr, Ca)xCoO3 양극촉매 제조 및 전기화학적 특성)

  • Heo, Sang-Hun;Eom, Seung-Wook;Kim, Hyun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.342-348
    • /
    • 2009
  • Zn/Air secondary batteries are high energy density type and environment-friendly. Also, they have safer properties than batteries of other type by low manufacturing cost and using the electrolyte solution. But, they have a weak concerning large output discharge. Oxygen evolution reaction(OER) and oxgen reduction reaction(ORR) in aqueous solution make a result of a decrease of cell efficiency and life span. Therefore, to minimize the voltage drop from between OCV and charge/discharge voltage is key point. The problem should be solved through developing catalysts of high efficiency. In this study, we synthesized $Pr_{1-x}(Sr,\;Ca)_x\;CoO_3$ powders by citric method and then measured physical characteristics of each powder by XRD, SEM, TGA etc. We examined its electrochemical properties by the cathodic polarization, anodic polarization and cyclic voltammogram. We achieved results that new catalysts showed better performances than existing $La_{1-x}Sr_xCoO_3$, $La_{1-x}Ca_xCoO_3$, ect. catalysts prepared in our lab.

Durability Evaluation of Inorganic-Impregnated Concrete Exposed to Long-Term Chloride Exposure Test (무기계 침투제를 적용한 콘크리트의 장기폭로실험을 통한 염해 내구성 평가)

  • Kwon, Seung-Jun;Park, Sang-Soon;Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • The repair technique using surface impregnation of reactive compound is so effective for deteriorated concrete structures that many researches are recently focused on these works. Particularly, inorganic impregnant is regarded as ecofriendly material because there is no air-pollution during manufacturing process as well as field coating works. Furthermore, The delamination between old concrete and impregnated surface does not occur, resulting from different material characteristics. In order to evaluate the durability performance of surface-impregnated concrete, durability evaluation through the long-term exposure tests is significant, however, experiments are usually limited to the temporary and qualitative laboratorial scope. In this study, durability characteristics for inorganic and organic/inorganic impregnated concrete specimens are evaluated through longterm chloride exposure test. The specimens with 21MPa and 34MPa strength have been prepared and exposed to chloride attack in the atmospheric, tidal, and submerged conditions. Evaluation for compressive strength, chloride penetration, and electrical potential (half cell potential) for steel corrosion are performed for the specimens exposed for 2 years. From the results, no distinct strength gaining is observed but the resistance to chloride penetration and steel corrosion is evaluated to be improved through surface impregnation. The more improved resistance to chloride attack is measured in the inorganic impregnated concrete and the results from atmospheric condition show more improved resistance to chloride attack than those from submerged and tidal condition.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

Ultrastructure and Metallothionein Expression in Rat Liver Treated with Di-(2-ethylhexyl)phthalate (Di-(2-ethylhexyl)phthalate에 의한 흰쥐 간세포 미세구조와 metallothionein 발현에 미치는 영향)

  • Kim, Da-Ham;Moon, Seung-Hoon;Lee, Mi-Young;Lee, Jong-Hwa;Park, Young-Hyun;Shin, Kil-Sang;Kim, Wan-Jong
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.289-296
    • /
    • 2007
  • Di-(ethyhexyl) phthalate (DEHP), commonly used as a plasticizer for manufacturing flexible vinyl products, has been the topic of extensive research, especially concerning endocrine disrupting properties. Metallothionein (MT) is a low molecular weight (6,000$\sim$7,000 Da), cysteine-rich (22$\sim$23%), metal-binding protein and is known to be induced by extrinsic factors such as chemical agents and stresses. Some of the known function of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Nonetheless, the definitive physiological function of MT are still unknown. This study was carried out to investigate the effects of DEHP on the ultrastructural changes and the expression of MT of the rat liver. The rats were orally intubated with either corn oil (experimental control) or 0.5 mg, 1.5 mg and 4.5 mg DEHP kg$^{-1}$ day$^{-1}$ in 0.5 mL of corn oil for 15 days before sacrificing and sampling. DEHP induced mild ultrastrctural changes of some cell organelles such as rough endoplasmic reticulum, mitochondria, lysosomes and peroxisomes in the rat liver treated with DEHP. In the respect of immunogold labelling and Western blotting, MT expression of the liver tissue was up-regulated by DEHP. In conclusion, DEHP has effects on the ultrastructures and hepatic function for MT expression in rat.

The Movement of Boron Compound by Infusion Method and Combination of Injection and Bandage-Wrapping

  • DAMAYANTI, Ratih;SRIBUDIANI, Evi;SOMADONA, Sonia;Djarwanto, Djarwanto;TARMADI, Didi;AMIN, Yusup;YUSUF, Sulaeman;SATITI, Esti Rini;ARSYAD, Wa Ode Muliastuty;SULAEMAN, Rudianda;Syafrinal, Syafrinal;PRAMASARI, Dwi Ajias
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.513-526
    • /
    • 2020
  • The existing preservation methods are difficult to be applied to a large dimension log which is needed for making traditional wooden ship 'Jalur' in Riau Province. Novel techniques to provide the use of readily available species to replace traditional species alternative were investigated. These included infusion and a combination of injection and bandage-wrapping methods for preserving living trees of Balam (Macaranga conifera (Rchb.f. & Zoll.) Müll.Arg.) and Bintangor (Calophyllum soulattri Burm.f.). Water-based boron compounds were applied as wood preservatives. In total, 18 discs from the bottom, middle, and top of four trees and two controls were used. Trees undergoing treatment were also used to see how wood anatomical structure might affect the boron penetration. The overall aim was to identify the best method for use in Jalur manufacturing. The results showed that in infused Balam tree where the hose position for the preservative intake was deep (10-15 cm from the bark), no boron compound was observed in the outer sapwood. Combination of injection and bandage-wrapping method gave higher percentage of boron penetration at bottom and middle of Balam tree. However, infused Bintangor showed 100% boron penetration. The larger vessel diameter, the absence of tyloses, and the simple perforation plates in Bintangor wood were likely to have contributed to the higher penetration of boron. The combination of bandage-wrapping and infusion, or alternatively by infusing the living trees close to the bark, and at as low as position in the stem gives better protection when treatments are applied to living trees.

Characteristics of yeast with low temperature adaptation for Yakju brewed (약주 제조를 위한 저온 적응성 효모의 특성)

  • Seo, Dong-Jun;Yeo, Soo-Hwan;Mun, Ji-Young;Jung, Woo-Jin;Cho, Yong Sik;Baek, Seong Yeol
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.908-914
    • /
    • 2015
  • The objectives of this study were to isolate and characterize low temperature adaptation yeast and to obtain suitable yeasts strains for manufacturing Yakju. In this study, we isolated 482 wild yeasts from fermented foods. Out of these, 5 yeast strains were selected based on increased growth at low temperature ($15^{\circ}C$) and high ${\beta}$-glucosidase activity. To screen the aromatic level of isolates, media containing cerulenin and 5,5,5-trifluor-DL-leucine (TFL) were used. Y297 strain demonstrated tolerance against TFL and produced more than 13% alcohol. Y297 strain was identified a Saccharomyces cerevisiae based on the 26S rDNA gene sequences. Maximum cell growth was observed after 19 hr and 38 hr of incubation at $25^{\circ}C$ and $15^{\circ}C$, respectively. The exponential phase was followed by a lengthy stationary phase, at $15^{\circ}C$, when the cells remained high viable. Y297 strain demonstrated tolerance against alcohol (10%), glucose (60%) and salt(NaCl, 8%). ${\beta}$-glucosidase and esterase activity in Y297 were higher than those of controls at $15^{\circ}C$. Overall, these results indicated that using wild yeast strain, isolated from fermented food, affects the chemical characteristics of the brewed Yakju.

Preparation of Yeast Extract from Waste Brewer's Yeast using Various Enzymes (각종 효소를 이용한 맥주 폐효모로부터 효모추출물 제조)

  • Lee, Ok-Hwan;Rhee, Seong-Kap;Son, Jong-Youn;Kim, Kyung-Im;Kim, Hyun-Duk;Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.867-872
    • /
    • 2002
  • This study was performed to investigate the optimum process conditions for manufacturing yeast extract from waste brewer's yeast using various enzymes. Contents of IMP, GMP, free amino acids, and crude protein of yeast extracts were measured by enzymes treatment. Crude protein contents of yeast extracts subjected to cell wall digestion enzyme treatment were 21.1, 33.6, and 28.0% for the control grouup, glucanase (0.5%, 12 h), and tunicase (1%, 18 h), respectively. Crude protein contents of yeast extracts subjected to protease treatment were 22.0, 30.8, and 29.8% for control group, bromelin (1%, 3 h), and protamex (1%, 3 h), respectively. Crude protein content of yeast extract subjected to glucanase and protamex mixed treatment was 34.4%. The total contents of IMP and GMP of yeast extracts subjected to G+P+A (glucanase+phosphodiesterase+adenyldeminase) and G+Pro+P+A (glucanase+protamex+phosphodiesterase+adenyldeaminase) treatments were 1,066 and 1,047 mg/100 g, respectively. The content of free amino acids of yeast extract was the highest (2,302 mg/100 g) in G+Pro+P+A treatment. Optimum concentration and process condition of enzyme treatment to obtain yeast extract with high IMP, GMP, and free amino acid content were in the order of glucanase (0.5%, 12 h), protamex (1%, 3h), phosphodiesterase (0.1%, 3 h) and adenyldeaminase (1%, 1.5 h) treatments.