• Title/Summary/Keyword: manufacturing cell

Search Result 861, Processing Time 0.029 seconds

Analytic Model on the Success/Failure Structure of New Product Development by Product Characteristic Grill (제품속성별 신제품개발의 성패구조 분석모형)

  • Gwon Cheol Sin;Lee Jae Ha
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.205-211
    • /
    • 2002
  • The purpose of this paper is 1) to extract managerial factor into each cell which is classified by the characteristic grill of new products 2) to construct a management model of new product development for korean companies. For this purpose, the characteristic grill of new products is classified by which is market/technology sphere. Moreover the focus of this analysis is on examination of success/failure factors, which have an important effect upon new product success or failure. The variables for this study were selected from literature survey and pre-interview was implemented specially. The subject of study was project leaders of electronics industry where have taken the leading part in product development activities in Korean manufacturing industries. Enquete survey was conducted in each firm and project managers were asked to respond. Conclusion of this study based on many significant results gained by the various multi-variate analysis are summarized as follows. First, it can he noted that success/failure factors are different by each classified model and characteristic grill of a new product. Second, it has been identified that the important factors of success products were technical & management support and market ability, the important factor of failure product were lacking in ability of technical development and R&D management system construction. This paper presents some useful guidelines in strategic and managerial aspects for development of new products. Concurrently, the model of this study should be a great practical approach for application of actual affairs.

  • PDF

Sintering Behavior of Ag-Ni Electrode Powder with Core-shell Structure

  • Kim, Kyung Ho;Koo, Jun-Mo;Ryu, Sung-Soo;Yoon, Sang Hun;Han, Yoon Soo
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.507-512
    • /
    • 2016
  • Expensive silver powder is used to form electrodes in most IT equipment, and recently, many attempts have been made to lower manufacturing costs by developing powders with Ag-Ni or Ag-Cu core-shell structures. This study examined the sintering behavior of Ag-Ni electrode powder with a core-shell structure for silicon solar cell with high energy efficiency. The electrode powder was found to have a surface similar to pure Ag powder, and cross-sectional analysis revealed that Ag was uniformly coated on Ni powder. Each electrode was formed by sintering in the range of $500^{\circ}C$ to $800^{\circ}C$, and the specimen sintered at $600^{\circ}C$ had the lowest sheet resistance of $5.5m{\Omega}/{\Box}$, which is about two times greater than that of pure Ag. The microstructures of electrodes formed at varying sintering temperatures were examined to determine why sheet resistance showed a minimum value at $600^{\circ}C$. The electrode formed at $600^{\circ}C$ had the best Ag connectivity, and thus provided a better path for the flow of electrons.

Development of CAD System for Effective Management of 2 Cell Box Culvert (지하매설물의 효율적 관리를 위한 이련암거 자동화설계)

  • Lho, Byeong-Cheol;Choi, Hong-Sik;Song, Young-Chul;Lee, Hyun-Jik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.1 s.9
    • /
    • pp.129-137
    • /
    • 1997
  • According to the functions of city are getting more complicate and diverse, recently the concerns about underground space have been risen, and many infra-structures for social activities are now constructed under the ground. To maintain these kind of infra-structures effectively, it is necessary for concerned workers to access easily to the existing drawings and design information. and to modify the design drawings immediately o the changes of design value. And in the field of construction, immediate structural analysis and generation of design drawings will help to promote manufacturing ability, the quality of products, and the effectiveness of maintenance of design materials effectively.

  • PDF

Fabrication of Glass-Ceramic Coacted Electrostatic Chucks by Tape Casting (테이프캐스팅에 의한 결정화유리 도포형 정전척의 제조)

  • 방재철;이경호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.169-172
    • /
    • 2002
  • This study demonstrated the feasibility of using tape-casting followed by sintering as a low-cost alternative for coating glass-ceramic or glass film on a metal substrate. The process has been successfully used to fabricate a glass-on-stainless steel and a glass-ceramic-on-molybdenum electrostatic chuck(ESC) with the insulating layer thickness about $150{\mu}{\textrm}{m}$. Electrical resistivity data of the coaling were obtained between room temperature and 55$0^{\circ}C$; although the resistivity values dropped rapidly with increasing temperature in both coatings, the glass-ceramic still retained a high value of $10^{10}$ ohm-cm at $500^{\circ}C$. Clamping pressure measurements were done using a mechanical apparatus equipped with a load-cell at temperatures up to $350^{\circ}C$ and applied voltages up to 600V; the clamping behavior of all ESCs generally followed the voltage-squared curve as predicted by theory. Based on these results, we believe that we have a viable technology for manufacturing ESCs for use in reactive-ion etch systems.

  • PDF

Development of a Porous Scaffold-Manufacturing Method by Blending Silk Fibroin and Agarose Polymer Solutions

  • Park, Seung-Won;Kweon, Hae-Yong;Goo, Tae-Won;Kim, Seong-Ryul;Jo, You-Young;Choi, Gwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.1
    • /
    • pp.75-79
    • /
    • 2012
  • Low-melting-temperature agarose gel solution, as a novel porogen was combined with a silk fibroin solution to generate interconnected porous networks. The porosity of the resultant silk fibroin-agarose scaffolds was greater than that of the scaffolds generated with agarose and deionized water. The porosities of silk fibroin scaffolds containing agarose gel at 0.5%, 1.0%, 1.5%, 2.0% [w/v] were 110.9%, 111.7%, 120.9%, and 123.0%, respectively. Lastly, the internal space generated in scaffolds after dissolution of the agarose gel provides a good environment for cell growth and movement within the scaffold.

Biological activities of α-spinasterol Isolated from Root of Phytolacca americana L. (미국자리공(Phytolacca americana L.)의 뿌리에서 추출한 α-spinasterol의 생물활성 검정)

  • Han, Sang Mi;Bae, Ki Hwan;Choi, Kwan Sam
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.177-181
    • /
    • 1996
  • Biological activities of MeoH extract of Phytolaccn americana L. was investigated. The extract was reextracted with ethyl acetate and fractionated by silica gel colum chromatography. The active compound was analysed by IR. $^1H$-NMR, $^{13}C$-NMR and MS and identified as $\alpha$-spinasterol. $\alpha$-spinasterol induced necrosis of primary root and resulted the death of the examed plant. The compound also inhibited growth of Mucor racemous but it showed weak cytotoxicity to 2 animal cancer cell lines (L1210, K562).

  • PDF

Effect of Conductive Additives on $FeS_2$ Cathode ($FeS_2$ 양극에 미치는 전도성 첨가제의 영향)

  • Choi, Yu-Song;Cheong, Hae-Won;Kim, Ki-Youl;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.224-230
    • /
    • 2012
  • Thermal batteries have excellent mechanical robustness, reliability, and long shelf life. Due to these characteristics as well as their unique activation mechanism, thermal batteries are widely adopted as military power sources. Li(Si)/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as molten salt electrolyte. However, it is known that Li(Si)/$FeS_2$ thermal batteries have high internal resistance. Especially, $FeS_2$ cathode accounts for the greater part of internal resistance in unit cell. Many efforts have been put into to decrease the internal resistance of thermal batteries, which result in the development of new electrode material and new electrode manufacturing processes. But the applications of these new materials and processes are in some cases very expensive and need complicated additional processes. In this study, internal resistance study was conducted by adding carbon black and carbon nano-tube, which has high electron conductivity, into the $FeS_2$ cathode. As a results, it was found that the decrease of internal resistance of $FeS_2$ cathode by the addition of carbon black and carbon nano-tube.

Investigation of Electron Thermally Induced Phase Transition in MAPbI3 Perovskite Solar Cells Using In-Situ XRD and TEM (실시간 XRD와 TEM을 이용한 MAPbI3의 온도 변화에 따른 구조 분석)

  • Choi, Jin-Seok;Eom, Ji-Ho;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • Methylammonium lead triiodide ($MAPbI_3$)-based perovskite solar cells potentially have potential advantages such as high efficiency and low-cost manufacturing procedures. However, $MAPbI_3$ is structurally unstable and has low phase-change temperatures ($30^{\circ}C$ and $130^{\circ}C$); it is necessary to solve these problems. We investigated the crystal structure and phase separation using real-time temperature-change X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. $MAPbI_3$ has a tetragonal structure, and at about $35^{\circ}C$ the c-axis contracts, transforming $MAPbI_3$ into the related cubic crystal structure. In addition, at $130^{\circ}C$, phase separation occurs in which $CH_3NH_2$ and HI at the center of the unit cell of the perovskite structure are extracted by gas, leavingand only $PbI_2$ of the three-component structure, is produced as the final solid product.

Effect of Sintering Process with Co3O4 on the Performance of LSCF-Based Cathodes for Solid Oxide Fuel Cells

  • Khurana, Sanchit;Johnson, Sean;Karimaghaloo, Alireza;Lee, Min Hwan
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.637-642
    • /
    • 2018
  • The impact of the sintering process, especially in terms of sintering temperature and sintering aid concentration, on the ohmic transport and electrode performance of $(La_{0.80}Sr_{0.20})_{0.95}CoO_{3-{\delta}}$-gadolinia-doped ceria (LSCF-GDC) cathodes is studied. The ohmic and charge-transfer kinetics exhibit a highly coupled $Co_3O_4$ concentration dependency, showing the best performances at an optimum range of 4-5 wt%. This is ascribed to small grain sizes and improved connection between particles. The addition of $Co_3O_4$ was also found to have a dominant impact on charge-transfer kinetics in the LSCF-GDC composite layer and a moderate impact on the electronic transport in the current-collecting LSCF layer. Care should be taken to avoid a formation of excessive thermal stresses between layers when adding $Co_3O_4$.

Performance Evaluation of 20 HP Outboard Motor in Consideration of Driving System Applied to Electric-Propulsion Boat (전기추진 선박에 적용되는 20HP급 전기추진 선외기 구동시스템의 성능평가에 대한 고찰)

  • Moon, Byung Young;Shin, Kuk Hwan;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.518-526
    • /
    • 2018
  • As a new technical approach, this paper introduces a method for improving an electrically propelled outboard motor in consideration of the driving system applied to an electric-propulsion boat with solar cell energy. The most efficient model for a drive shaft, propeller shaft, and bevel gear was suggested and examined with respect to the results of test operation in prototype mode. Furthermore, this research included a performance evaluation of the manufactured prototype to acquire the purposed quantity value and the development items. After manufacturing the desired prototype of an electrically propelled outboard motor, the maximum sail time, thrust force, noise, and weight were evaluated in a performance test. An additional test in relation to the maximum sail speed (knots) of the completed prototype was conducted using a sea trial evaluation to acquire the optimum quantity.