DOI QR코드

DOI QR Code

Investigation of Electron Thermally Induced Phase Transition in MAPbI3 Perovskite Solar Cells Using In-Situ XRD and TEM

실시간 XRD와 TEM을 이용한 MAPbI3의 온도 변화에 따른 구조 분석

  • Choi, Jin-Seok (Department of Materials Science and Engineering, Chungnam National University) ;
  • Eom, Ji-Ho (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
  • 최진석 (충남대학교 신소재공학과) ;
  • 엄지호 (충남대학교 신소재공학과) ;
  • 윤순길 (충남대학교 신소재공학과)
  • Received : 2018.09.18
  • Accepted : 2018.10.10
  • Published : 2019.01.01

Abstract

Methylammonium lead triiodide ($MAPbI_3$)-based perovskite solar cells potentially have potential advantages such as high efficiency and low-cost manufacturing procedures. However, $MAPbI_3$ is structurally unstable and has low phase-change temperatures ($30^{\circ}C$ and $130^{\circ}C$); it is necessary to solve these problems. We investigated the crystal structure and phase separation using real-time temperature-change X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. $MAPbI_3$ has a tetragonal structure, and at about $35^{\circ}C$ the c-axis contracts, transforming $MAPbI_3$ into the related cubic crystal structure. In addition, at $130^{\circ}C$, phase separation occurs in which $CH_3NH_2$ and HI at the center of the unit cell of the perovskite structure are extracted by gas, leavingand only $PbI_2$ of the three-component structure, is produced as the final solid product.

Keywords

JJJRCC_2019_v32n1_64_f0001.png 이미지

Fig. 1. In-situ XRD spectrum of MAPbI3 under different temperature condition (a) phasetransition from tetragonal to cubic at 25~35℃, (b)phase separation PbI2/MAI at 125~135℃, (c) peak deconvolution of the cubic structure (100) spectrum at 135~140℃, and (d) peak deconvolution of the tetragonal structure (200) spectrum at 28~28.5℃.

JJJRCC_2019_v32n1_64_f0002.png 이미지

Fig. 2. EELS spectrum measured by electron current value (a) EELS spectrum of 0.2, 0.5, 1.0, 5.0, and 10.0 nA screen current, (b) plasmon peak shift of about 2.8 eV in the low loss region, and (c) temperature change of calculated by average electron energy loss value, specimen properties and TEM condition.

JJJRCC_2019_v32n1_64_f0003.png 이미지

Fig. 3. Effect of MAPbI3 structure on electron current and specimen temperature (a), (d) the high-resolution TEM images and the FFT patterns in the process of phase change from tetragonal to cubic at 31.95℃, (b), (e) cubic to trigonal at 128.5℃, and (c), (f) change of phase of PbI2 ring pattern density at 150℃.

References

  1. N. K. Kim, Y. H. Min, S. Noh, E. Cho, G. Jeong, M. Joo, S. W. Ahn, J. S. Lee, S. Kim, K. Ihm, H. Ahn, Y. Kang, H. S. Lee, and D. Kim, Sci. Rep., 7, 4645 (2017). [DOI: https://doi.org/10.1038/s41598-017-04690-w]
  2. M. Gratzel, Nat. Mater., 13, 838 (2014). [DOI: https://doi.org/10.1038/nmat4065]
  3. Y. Zhao and K. Zhu, Chem. Soc. Rev., 45, 655 (2016). [DOI: https://doi.org/10.1039/C4CS00458B]
  4. R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Horantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, Adv. Energy Mater., 6, 1502458 (2016). [DOI: https://doi.org/10.1002/aenm.201502458]
  5. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 982 (2014). [DOI: https://doi.org/10.1039/C3EE43822H]
  6. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, and H. G. Boyen, Adv. Energy Mater., 5, 1500477 (2015). [DOI: https://doi.org/10.1002/aenm.201500477]
  7. M. Liu, M. B. Johnston, and H. J. Snaith, Nature, 501, 395 (2013). [DOI: https://doi.org/10.1038/nature12509]
  8. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Adv. Mater., 26, 6503 (2014). [DOI: https://doi.org/10.1002/adma.201401685]
  9. Y. J. Kim, T. V. Dang, H. J. Choi, B. J. Park, J. H. Eom, H. A Song, D. Seol, Y. Kim, S. H. Shin, J. Nah, and S. G. Yoon, J. Mater. Chem. A, 4, 756 (2015). [DOI: https://doi.org/10.1039/C5TA09662F]
  10. D. Weber, Z. Naturforsch., B: Chem. Sci., 33, 1443 (1978). [DOI: https://doi.org/10.1515/znb-1978-1214]
  11. A. Poglitsch and D. Weber, J. Chem. Phys., 87, 6373 (1987). [DOI: https://doi.org/10.1063/1.453467]
  12. S. Luo and W. A. Daoud, Materials, 9, 123 (2016). [DOI:https://doi.org/10.3390/ma9030123]
  13. R. F. Egerton, P. Li, and M. Malac, Micron, 35, 399 (2004). [DOI: https://doi.org/10.1016/j.micron.2004.02.003]
  14. S. B. Vendelbo, P. J. Kooyman, J. F. Creemer, B. Morana, L. Mele, P. Dona, B. J. Nelissen, and S. Helveg, Ultramicroscopy, 133, 72 (2013). [DOI: https://doi.org/10.1016/j.ultramic.2013.04.004]
  15. C. Colliex, Science, 347, 611 (2015). [DOI: https://doi.org/10.1126/science.aaa5311]
  16. R. F. Egerton, Micron, 34, 127 (2003). [DOI: https://doi.org/10.1016/S0968-4328(03)00023-4]
  17. G. R. Kumar, A. D. Savariraj, S. N. Karthick, S. Selvam, B. Balamuralitharan, H. J. Kim, K. K. Viswanathan, M. Vijaykumarc, and K. Prabakar, Phys. Chem. Chem. Phys., 18, 7284 (2016). [DOI: https://doi.org/10.1039/C5CP06232B]
  18. B. D. Cullity and S. R. Stock, Elements Of X-Ray Diffraction (Addition-Wesley, Boston, 1978) p. 26.
  19. T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. Dittrich, Appl. Phys. Lett., 103, 183906 (2013). [DOI:https://doi.org/10.1063/1.4826116]
  20. K. P. Ong, T. W. Goh, Q. Xu, and A. Huan, J. Phys. Chem. Lett., 6, 681 (2015). [DOI: https://doi.org/10.1021/jz502740d]