• Title/Summary/Keyword: manufacturing cell

Search Result 861, Processing Time 0.025 seconds

Formulation of DNC (Direct Numerical Control) system for controlling flexible manufacturing system (FMS 제어를 위한 DNC 시스템의 형성에 관한 연구)

  • 이병룡;이석희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.242-248
    • /
    • 1987
  • Recently, a quite large number of investigation is published on the subject of Flexible Manufacturing System which can cope with the volatile market demand and the variety of product. Minimum requirement of designing FMS is depicted and by investigating the communication system between the machine tool and the cell control computer, ana between the central computer and the cell control computer, when it is formed as a sub-system of an FEM, the software can be evolved to the control software of the total Flexible Manufacturing System. It is developed the communication system between the central computer and the cell control computer which is the basic structure of the control architecture of FMS under the concept of DNC (Direct Numerical Control). It is used CYBER 180-830 as the central computer, and GMC-1100 computer as the cell control computer, and the main basic program is developed and tested, thus forming a DNC system which can be used in educational environment.

  • PDF

Modification of Existing Similarity Coefficients by Considering an Operation Sequence Ratio in Designing Cellular Manufacturing Systems

  • Yin, Yong;Yasuda, Kazuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.19-28
    • /
    • 2002
  • An operation sequence of parts is one of the most important production factors in the design of cellular manufacturing systems. Many similarity coefficient method (SCM) based approaches have been proposed to solve cell formation problems in the literature. However, most of them do not consider the operation sequence factor. This study presents an operation sequence ratio (OSR) and modifies some existing similarity coefficients using the OSR to solver cell formation problems considering operation sequences. The computational results show that the OSR ratio is useful and robust in solving cell formation problems with operation sequences.

Current Status and Perspectives of Cell Culture-Based Vaccine Production (동물세포배양을 통한 백신 생산의 현황과 미래전망)

  • Jang, Jun-O;Kim, Ik-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.124-128
    • /
    • 2010
  • Vaccines, especially for viruses, have been produced from egg-based manufacturing process. The method is simple and easy to set up the manufacturing process. However, the method has many problems in quality control, limit of manufacturing capacity, and ethical issues. Over the last decade, an alternative method, which manufactures vaccines using cell culture-based system, has received great attention to overcome the problems in egg-based vaccine production. This article examines current status and perspectives of cell culture-based vaccine production.

PLC Manager for Incompatible PLCs in a Cell Controller (비호환 기종 PLC들의 통합제어를 위한 PLC매니저 설계)

  • Park, Won-Yil
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.658-665
    • /
    • 1994
  • CIM is generally considered as a solution for total automation of a manufacturing system. In a CIM system, Flexible Manufacturing System(FMS) is linked colsely to the actual manufacturing line. This study will examine the strategy of integrating incompatible FA equipments, expecially PLCs (Programable Logic Controllers). PLC Manager is proposed as a model for integrating PLC algorithms, whose primary tasks are to communicate line-field data with PLCs and cell controller. To operate it, a PLC script language is designed and implemented.

A Cell Formation Model For Manufacturing System with Sequence Dependence (가공순서에 종속적인 제조시스템을 위한 군형성모형)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.49
    • /
    • pp.59-65
    • /
    • 1999
  • This paper considers the cell formation in a manufacturing environment where the setup times and costs are significantly dependent on the sequence. The trade-off between saving on the setup costs and additional investment on new machines is considered for determining the economic number of cells. Accordingly, This paper develops a mixed integer program and mentions a variety of manufacturing situations where this model can be useful. This paper also includes an illustrative example.

  • PDF

Machine-Part Cell Formation based on Kohonen화s Self Organizing Feature Map (Kohonen 자기조직화 map 에 기반한 기계-부품군 형성)

  • ;;山川 烈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.315-318
    • /
    • 1996
  • The machine-part cell formation means the grouping of similar parts and similar machines into families in order to minimize bottleneck machines, bottleneck parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. The cell formation problem is knows as a kind of NP complete problems. This paper briefly introduces the cell-formation problem and proposes a cell formation method based on the Kohonen's self-organizing feature map which is a neural network model. It also shows some experiment results using the proposed method. The proposed method can be easily applied to the cell formation problem compared to other meta-heuristic based methods. In addition, it can be used to solve large-scale cell formation problems.

  • PDF

An Integrated Shop Operation System for Multi-Cell Flexible Manufacturing Systems under Job Shop Environments (멀티 셀 유연생산환경을 위한 통합운용시스템)

  • Nam, Sung-Ho;Ryu, Kwang-Yeol;Shin, Jeong-Hoon;Kwon, Ki-Eok;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.386-394
    • /
    • 2012
  • Recent trends in the flexible manufacturing systems are morphing cell control for the shop-wide production operation system and providing the integrated operation and execution system together with vendor-specific FMC/FMS platform. In these requirements, the shop-floor level operation system plays a role of coordinating the control activity of each cell, and has to provide flexibility for the complexity of mixed operations of various cells. This paper suggests a system architecture for the mixed environments of multi-cells and job shop, its corresponding enabling technologies based on comparative studies with other related studies and commercialized systems. This approach includes a process definition model considering the integration with upper BOM-BOP and external service modules, and reconfigurable device-level interface which provides dynamic interconnections with machine tools and cell controllers. The function modules and their implementation results are also described to provide the feasibility of the proposed approaches as the flexible shop-floor operation system for the multi-cell environments.

Research on Risk Assessment of Lithium-ion Battery Manufacturing Process Considering Cell Materials (셀소재를 고려한 리튬2차전지 제조공정 위험성 평가 방법 연구)

  • Kim, Taehoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.76-87
    • /
    • 2022
  • Lithium-ion batteries (LIBs) have attracted much interest for their high energy density (>150 mAh/g), high capacity, low self-discharge rate, and high coulombic efficiency. However, with the successful commercialization of LIBs, fire and explosion incidents are likely to increase. The thermal runaway is known as the major factor in battery-related accidents that can lead to a series of critical conditions. Considering this, recent studies have shown an increased interest in countering the safety issues associated with LIBs. Although safety standards for LIB use have recently been formulated, little attention has been paid to the safety around the manufacturing process for battery products. The present study introduces a risk assessment method suitable for assessing the safety of the LIB-manufacturing process. In the assessment method, a compensation parameter (Z-factor) is employed to correctly evaluate the process's safety on the basis of the type of material (e.g., metal anode, liquid electrolyte, solid-state electrolytes) utilized in a cell. The proposed method has been applied to an 18650 cell-manufacturing process, and three sub-processes have been identified as possibly vulnerable parts (risk index: >4). This study offers some crucial insights into the establishment of safety standards for battery-manufacturing processes.

A machine-cell formation method based on fuzzy set (퍼지 이론에 기초한 머신-셀 구성방법)

  • 이노성;임춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1565-1568
    • /
    • 1997
  • In this paper, a fuzzy based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy lovic is employed to express the degree of appropriateness when alternative machnies are specified to process a part shape. For machine grouping, the similarity coefficient based approach is used. The algorithm produces efficient machine cells and part families which maximize the similarity values.

  • PDF

Design of Scheduling System for Flexible Manufacturing Cells (FMC에서의 일정계획 시스템의 설계)

  • 신대혁;이상완
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.63-71
    • /
    • 1994
  • The purpose of this paper is to describe an effective cell scheduling system for flexible manufacturing cells. Based on the FMC characteristics, cell scheduling can be defined as a dynamic modified flow shop working in a real-time system. This paper attempt to find the optimal cell scheduling when minimizing the mean flow time for n-job/m-machine problems in static and dynamic environments. Real-time scheduling in an FMC environment requires rapid computation of the schedule.

  • PDF