• Title/Summary/Keyword: manufacturing cell

Search Result 861, Processing Time 0.026 seconds

Post-manufacturing Array Operation Repair for NAND Flash Memories with On-Chip Microcontrollers (온칩 마이크로컨트롤러를 사용하는 낸드 플래시 메모리의 제조 후 어레이 동작 수정)

  • Geonu Kim;Yong-Ho Cho
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.365-368
    • /
    • 2024
  • This paper proposes a scheme for NAND flash memories equipped with on-chip microcontrollers and instruction ROM, that enables patching of erroneous cell array operation instructions after manufacturing. The scheme incorporates a small patch instruction RAM, where the patching instructions are fetched using a configurable Program Counter (PC) substitution mechanism. Both the patching instructions and PC substitution data are stored in a designated NAND cell area and loaded at power-up along with the electrical fuse data. As the scheme is designed to handle only a small number instruction patches, the area overhead remains minimal.

Fabrication Method of OPV using ESD Spray Coating (ESD 스프레이를 이용한 OPV 제작 기법)

  • Kim, Jungsu;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active components in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT, which are printed with functional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manufacturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem: it is difficult to apply toa continuous process as a R2R printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, anelectrostatic atomizer sprays micro-drops from the solution injected into the capillary, with electrostatic force generated by electric potential of about tens of kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and Active layer which consist of the P3HT:PCBM. The result of experiment, organic solar cell using ESD thin film coated method is occurred efficiency of about 1.4%. Also, the case of only used to ESD method in the active layer coating is occurred efficiency of about 1.86% as the applying a spin coating in the PEDOT:PSS layer. We can expect that ESD method is possible for continuous process to manufacture in the organic solar cell or OLED device.

  • PDF

An Analysis of Formability of Micro Pattern Forming on the Thin Sheet Metal (마이크로 박판 미세 패턴 성형공정의 성형성에 대한 해석적 연구)

  • Cha, Sung-Hoon;Shin, Myung-Soo;Kim, Jong-Ho;Lee, Hye-Jin;Kim, Jong-Bong
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2009
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. The solar cell plate may have millions of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll-to-roll forming process. Also formability is analysed for various number of mesh, protrusion shapes and forming temperature.

A Study on FTO-less Dye Sensitized Solar Cell with Ti Deposited Glass (티타늄이 증착된 유리를 사용한 FTO-less 염료감응형 태양전지에 관한 연구)

  • Park, Songyi;Seo, Hyunwoong;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Song, Jeong-Yun;Prabakar, Kandasamy;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.208-212
    • /
    • 2013
  • Dye-sensitized solar cells (DSCs) have taken much attention due to their low cost and easy fabrication method compare to silicon solar cells. But research on cost effective DSC is prerequisite for commercialization. Fluorine doped tin oxide (FTO) which have been commonly used for electrode substrate as electron collector occupied most percentage of manufacturing cost. Therefore we studied FTO-less DSC using sputtered Ti deposited glass as photoelectrode instead of FTO to reduce manufacturing cost. Ti films sputtered on the glass for different time, 5 to 20 minutes with decreasing sheet resistance as deposition time increases. A light source illuminated to counter electrode in order to overcome opaque Ti films. The efficiency of DSC (Ti20) made Ti sputtered glass for 20 min as photoelectrode was 5.87%. There are no significant difference with conventional cell despite lower manufacturing cost.

Battery Module Bonding Technology for Electric Vehicles (전기자동차 배터리 모듈 접합 기술 리뷰)

  • Junghwan Bang;Shin-Il Kim;Yun-Chan Kim;Dong-Yurl Yu;Dongjin Kim;Tae-Ik Lee;Min-Su Kim;Jiyong Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell (플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성)

  • Lee, Mi-Jai;Chae, Yoo-Jin;Kim, Jin-Ho;Hwang, Jong-Hee;Park, Sang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.

Bioethanol Production Based on Crude Glycerol Using Enterobacter aerogenes (Enterobacter aerogenes를 이용한 crude glycerol 기반의 바이오에탄올 생산)

  • Jung, Hong-Sub;Seong, Pil-Je;Go, A-Ra;Lee, Sang-Jun;Kim, Seung-Wook;Han, Sung-Ok;Cho, Jae-Hoon;Cho, Dae-Haeng;Kim, Yong-Hwan;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • The effects of pH, glycerol concentration and salt on cell growth and ethanol production using Enterobacter aerogenes KCTC 2190 were evaluated in the anaerobic culture condition. In condition of initial pH 5, cell growth and ethanol production were highest. An initial concentration of 10 g/L of pure glycerol gave the highest cell growth and ethanol production. However, in case of over 15 g/L of pure glycerol, they decreased. The cell growth and ethanol production decreased with the increase of salt concentration. When 10 g/L of crude glycerol was used as the carbon source, the cell growth and ethanol production were $1.32\;OD_{600}$ and 3.95 g/L, respectively, which were about 94.4% and 88.5% compared to those of pure glycerol. These result indicates that the crude glycerol produced in the biodiesel manufacturing process maybe useful as a potential carbon source for ethanol production form Enterobacter aerogenes KCTC 2190.

Characteristic of neuroblastoma cell (SH-SY5Y) culture on the crystalline diamond film (다결정 다이아몬드 필름의 신경종양세포(SH-SY5Y) 배양 특성)

  • Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Dae-Hoon;Kim, Min-Hye;Park, Hye-Bin;Jhee, Kwang-Hwan;Song, Kwang-Soup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.10-15
    • /
    • 2013
  • In order to fabricate high sensitive and stable biosensors, we require the material with superior biocompatibility and physical-chemical stability. Many kinds of biomaterials have been evaluated to apply for bioindustry. Recently, carbon based diamond thin films have been focal pointed as bio-applications and their possibility has been evaluated. Diamond thin film has many advantages for electrochemical and biological applications, such as wide potential window (3.0-3.5V), low background current and chemical-physical stability. In this work, we have cultured neuroblastoma cell (SH-SY5Y) on the crystalline diamond films. We use MTT assay to evaluate the characteristic of cell culture on the substrates. As a result, neuroblastoma cell was cultured on the crystalline diamond film as similar as cell culture dish.

Development of Octagonal Ring Load Cell Based on Strain Rings (스트레인 링 이론 기반의 팔각링 로드셀 개발)

  • Kim, Joong-Seon;Jo, Hyeong-Geun;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.97-103
    • /
    • 2018
  • Force is a crucial element to be measured in various industries, especially the machine tool industry. Mega units of force are required in fields such as the heavy and ship industries. Micro/nano units of force are required for microparticles. The detection of force generates a physical transformation due to the force imposed from the outside, atlrnd electrical voltage signals are obtained from the system. For the detection of force, an octagonal ring load cell based on circular ring theory is designed and produced. To design the octagonal strain ring, theoretical values with data from the ANSYS program are compared to determine the size of the octagonal strain ring. An octagonal strain ring of the chosen size is made with the SCM415 material. The strain gauges are attached to the octagonal strain ring, designed to construct a full Wheatstone bridge. The LabVIEW program is used to measure the data, and strain values are found. With the octagonal ring load cell completed in this way, experiments are conducted by imposing forces on the tangential axis and radial axis. Experiments are performed to verify if the octagonal ring load cell conducts measurements properly, and theoretical values are analyzed to find any differences. The data will later be used in further research to develop a machine-tool dynamometer.

A Study on Mirror Surface Manufacturing Process for Solar Cell (태양전지용 경면 제조 공정에 대한 연구)

  • 이종권;박지환;송태환;류근걸;이윤배
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.47-49
    • /
    • 2003
  • The cost of material and slicing of silicon wafer occupied more than 30% of solar cell manufacturing cost. The substitution of silicon wafer into STS 304 stainless steel could be the promising solution to decrease the material cost. Moreover the stainless steel solar cell could have the advantage of low weight and durability. However, the highly polished surface is required to meet the characteristic of solar cell. The electropolishing process in phosphoric acid based solution was used to get the surface quality. The obtained result was 28 nm obtained in current density of 2Amfi/$cm^2$ at $80^{\circ}C$. The leveller effect of glycerine, ethylene glycol and propylen glycol was studied. When the 0.4 g/l of ethylene glycol was added to the electrolyte, the surface roughness was best, 15 nm.

  • PDF