• Title/Summary/Keyword: manual-based test

Search Result 296, Processing Time 0.027 seconds

Effects of Purposeful Activities Combined with Music on Upper Extremity Function, Therapeutic Motivation, and Mood in Acute Stroke Patients (음악을 병행한 목적있는 활동이 급성기 뇌졸중 환자의 상지기능, 치료동기와 기분에 미치는 효과)

  • Moon, Jong-Hoon;Kim, Kye-Ho;Lee, Soon-Hyun;Won, Young-Sik
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 2017
  • Purpose: The aim of the investigation was to identify the effects of purposeful activities combined with music on upper extremity function, motivation, and mood in acute stroke patients. Methods: For the study, 19 acute stroke inpatients were recruited at a general hospital in Korea. The patients were allocated between an experimental group (n=9) and a control group (n=10). The experimental group performed purposeful activities with their preferred music, and the control group carried out purposeful activities without music. The 2 groups received the treatments 30 min per day, 5 days per week, for 4 weeks. Measurements were taken before and after intervention, including a manual function test (MFT) for measuring upper extremity function, a volitional questionnaire (VQ) for assessing motivation, and the Beck depression inventory (BDI) and Beck anxiety inventory (BAI) for assessing mood. Results: In post-treatment measurement, both groups showed greater MFT, VQ, and BDI scores than in pre-treatment. Significantly greater VQ and BDI changes were represented in the experimental group as compared to the control group. Conclusion: Based on the findings of this study, purposeful activities combined with music have a positive effect on motivation and depression in acute stroke patients.

A Study on General Characteristics of Wind and Solar Power System, Automatic Tail Safety Controller and DC-DC Converter (풍력 및 태양광 발전시스템의 일반 특성과 강풍제어기 및 DC-DC컨버터에 대한 연구)

  • Choi, Jung-Hoon;Park, Sung-Jun;Moon, Chae-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.109-116
    • /
    • 2005
  • Wind power and photovoltaic(PV) systems are getting into the spotlight as substitute energy. But problem is happened stability by speed change of wind and the power output of the sun's ray. The power output amount according to velocity of wind power system. System breakdown can happen at change of sudden velocity, typhoon and night. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The operation of automatic tail safety controller verified by manual test. PV system is a energy change system by temperature of sun's ray and cell. Maximum power point tracking(MPPT) is used in PV systems to maximize the photovoltaic array output power. In existed PV system is low output and changeable DC voltage for boost and filtering the buck-boost converter use. But, this paper established deformed DC-DC converter. Changed Buck-boost converter's unlined output current to line output current using DC-DC converter. This is effect that reduce ripple of output current. Proved through an output waveform comparison experiment. Finally, tail safety brake controller is established to wind turbine system for stability elevation and DC-DC converter is established on PV system for stability output.

Effect of the Mental Practice on the Upper Limb Motor Function Improvement of Hemiplegic Patients (정신훈련이 편마비환자의 상지기능 향상에 미치는 영향)

  • Park, Min-Chull;Ahn, So-Youn;Lee, Hyun-Ok;Koo, Bong-Oh
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.85-98
    • /
    • 2006
  • This study was performed to examine the influences of the mental practice to the hemiplegic upper limb motor function improvement. 20 minute neurologic treatment based on the neurophysiological theory, 10 minute activities of daily living training, and 10 minute mental practice 5 times a week were given in turn to the experimental group(N=11). On the other hand 20 minute neurologic treatment, and 10 minute activities of daily living training 5 times a week were given in turn to the control group(N=11). Both Fugl-Meyer Assessment Scale and Manual Function Test were used to evaluate upper limb motor recovery, upper limb motor function and movement ability. And the Motor Activity Log; Amount of Use and Motor Activity Log; Quality of Movement before training, 2 weeks after training, and 4 weeks after training were measured to assess the upper limb motor quantitatively and qualitatively each. The results are as follows. 1) Considering the interactions of the rate of change on the upper limb motor recovery, motor function, movement ability improvement, and qualitative motor improvement in ADL of experimental group and control group, the change rates of experimental group were found to be greater than those of the control group. 2) In experimental group, the higher the achievements were, the better upper motor recovery was.

  • PDF

Development of a Harvester for Crawled Spinach (포복형 시금치 수확기 개발)

  • Jun H. J.;Kim S. H.;Choi Y.;Kim Y. K.;Hong J. T.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.210-219
    • /
    • 2005
  • This study was conducted to solve the problem of crawled spinach harvesting that had been mainly done by manpower on the outdoor fields during the winter season. Moreover, there are not enough workers available for farming at most of rural areas in Korea because farming is getting hard and the number of old-aged workers is increasing. In order to find appropriate methods of digging, picking and collecting of spinach, the tests were examined outdoors. A prototype was designed based on the results of the tests and then fabricated for digging, picking-up and then collecting in continuous operation for harvesting spinach planted in the outdoor fields. In the field test with the prototype, the vibration intensity transmitted to the driver by vibrating blade was low while the vibrating blade reduced digging power by $46\%$ compared to that of the fixed blade. The spinach loss was found to be as low as $0.7\%$ in the condition of digging depth of 40 mm, cam rotational velocity of 748 rpm, and blade amplitude of 16.5 m. The working performance of the prototype spinach harvester was found to be 3.8 hour/10a resulting in $96\%$ of labor saving and $85\%$ of operating cost compared to the conventional manual harvesting.

The Operational Comparison of SPOT GCP Acquisition and Accuracy Evaluation

  • Kim, Kam-Lae;Kim, Uk-Nam;Chun, Ho-Woun;Lee, Ho-Nam
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • This paper presents an investigation into the operational comparison of SPOT triangulation to build GCP library by analytical plotter and DPW (digital photogrammetric workstation). GCP database derived from current SPOT images can be used to other image sensors of satellite, if any reasons, such as lack of topographic maps or GCPs. But, general formulation of a photogrammetric process for GCP measurement has to take care of the scene interpretation problem. There are two classical methods depending on whether an analytical plotter or DPW is being used. Regardless of the method used, the measurement of GCPs is the weakest point in the automation of photogrammetric orientation procedures. To make an operational comparison, five models of SPOT panchromatic images (level 1A) and negative films (level 1AP) were used. Ten images and film products were used for the five GRS areas. Photogrammetric measurements were carried out in a manual mode on P2 analytical plotter and LH Systems DPW770. We presented an approach for exterior orientation of SPOT images, which was based on the use of approximately eighty national geodetic control points as GCPs which located on the summit of the mountain. Using sixteen well-spaced geodetic control points per model, all segments consistently showed RMS error just below the pixel at the check points in analytical instrument. In the case of DPW, half of the ground controls could not found or distinguished exactly when we displayed the image on the computer monitor. Experiment results showed that the RMS errors with DPW test was fluctuated case by case. And the magnitudes of the errors were reached more than three pixels due to the lack of image interpretation capability. It showed that the geodetic control points is not suitable as the ground control points in DPW for modeling the SPOT image.

  • PDF

Accuracy of full arch digital model obtained from rendering-based intraoral scanner(IOS) : An example of CS-3600 system (동영상 촬영방식의 구강스캐너로 채득된 전악치열 디지털모형의 정확도 분석 : CS-3600 시스템을 중심으로)

  • Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate and compare the accuracy of definitive casts that are fabricated from digital intraoral impression and conventional impression technique. Methods: A master model(ANNA-4, Frasaco GmbH, Tettnang, Germany) with the prepared upper full arch tooth was used. Conventional impression and then stone model(n=10) were produced from this master model, and on the other hands, digital impressions were made with the CS-3600 intraoral scanner(n=10). Six linear measurements were recorded between landmarks, directly on each of the stone models on two occasions by a single examiner. Measurements were made with a digital caliper to the nearest 0.01mm from manual models and with the software(Delcam PowerSHAPE) from the virtual models. The t-student test for paired samples and intraclass correlation coefficient(ICC) were used for statistical analysis. Results: The measurement of two methods showed good reliability. The ICC of the two models were 0.88~0.91(stone model) and 0.94~0.99(digital model). The mean differences to master model for stone model and digital model were 0.10~0.14mm, and 0.14~0.20mm, respectively. Conclusion: The definitive casts obtained with digital intraoral technique model had significantly larger dimensions as compared to those of the stone model. However, the differences to the master model detected appear to provide enough accuracy and reliability for clinical application.

Measuring Technique For Acoustic Roughness of Rail Surface With Homogeneous Displacement Sensors (동일 변위센서를 사용한 레일표면 음향조도의 측정방법)

  • Jeong, Wootae;Jang, Seungho;Kho, Hyo-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7941-7948
    • /
    • 2015
  • Rolling noises during train operation are caused by vibration excited from irregularities of surface roughness between wheel and rail. Therefore, a proper measurement and analysis techniques of acoustic roughness between wheel and rail surface are required for transmission, prediction, and analysis of the train rolling noise. However, since current measuring devices and methods use trolley-based manual handling devices, the measurements induce unstable measuring speed and vibrational interface that increases errors and disturbances. In this paper, a new automatic rail surface exploring platform with a speed controller has been developed for improving measurement accuracy and reducing inconsistency of measurements. In addition, we propose a data integration method of the rail surface roughness with multiple homogeneous displacement sensors and verified the accuracy of the integrated data through standard test-bed railway track investigation.

Design and Fabrication of Coaxial Rotorcraft-typed Micro Air Vehicle for Indoor Surveillance and Reconnaissance (실내감시정찰용 동축반전 헬리콥터형 미세비행체 설계 및 제작)

  • Byun, Young-Seop;Shin, Dong-Hwan;An, Jin-Ung;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1388-1396
    • /
    • 2011
  • This paper is focused on the procedure of the development of a micro air vehicle which has vertical take-off and landing capability for indoor reconnaissance mission. Trade studies on mission feasibility led to the proposal of a coaxial rotorcraft configuration as the platform. The survey to provide a guide for preliminary design were conducted based on commercial off-the-shelf platform, and the rotor performance was estimated by the simple momentum theory. To determine the initial size of the micro air vehicle, the modified conventional fuel balance method was applied to adopt for electric powered vehicle, and the sizing problem was optimized with the sequential quadratic programming method using MATLAB. The designed rotor blades were fabricated with high strength carbon composite material and integrated with the platform. The developed coaxial rotorcraft micro air vehicle shows stable handling quality with manual flight test in indoor situation.

An Automatic LOINC Mapping Framework for Standardization of Laboratory Codes in Medical Informatics (의료 정보 검사코드 표준화를 위한 LOINC 자동 매핑 프레임웍)

  • Ahn, Hoo-Young;Park, Young-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1172-1181
    • /
    • 2009
  • An electronic medical record (EMR) is the medical system that all the test are recorded as text data. However, domestic EMR systems have various forms of medical records. There are a lot of related works to standardize the laboratory codes as a LOINC (Logical Observation Identifiers Names and Code). However the existing researches resolve the problem manually. The manual process does not work when the size of data is enormous. The paper proposes a novel automatic LOINC mapping algorithm which uses indexing techniques and semantic similarity analysis of medical information. They use file system which is not proper to enormous medical data. We designed and implemented mapping algorithm for standardization laboratory codes in medical informatics compared with the existing researches that are only proposed algorithms. The automatic creation of searching words is being possible. Moreover, the paper implemented medical searching framework based on database system that is considered large size of medical data.

  • PDF

A Study on the Allowances of Aircraft Landing Distance (항공기 착륙거리의 여유분 산정에 관한 연구)

  • Noh, Kun-Soo;Kim, Woong-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • Among the phases of flight operations pilots feel much pressure in landing segment. There is a number of factors affecting landing safety while pilots reduce aircraft speeds and make a touchdown and stop completely. If runway length is sufficient for landing, there maybe is no problem. But it is not the case all the time. So it is necessary to confirm whether landing performance is within limits or not. Required landing distance is actual landing distance demonstrated by flight test pilot plus allowances for average airline pilots. FAR(Federal Aviation Regulations) AFM certification is based upon manual landing for dry and wet runway. Other runway conditions are not the certification basis. JAR dictates even contaminated/slippery runway is included by prescribed allowances. Automatic landing is not certification basis, so actual landing distances are provided. In this paper I would like to analyze distance allowances included in each type of runway condition. In addition there is no regulation about allowances for specific runway condition, I would suggest adequate allowances for that case.