• Title/Summary/Keyword: manning equation

Search Result 54, Processing Time 0.024 seconds

Analysis of Salinity Dispersion in Estuaries by an X-Z Numerical Model (X-Z 수치모형에 의한 하구의 연도확산 분석)

  • 강주환;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.185-196
    • /
    • 1991
  • A laterally-averaged X-Z numerical model with transformed coordinates is developed to analyze the salinity dispersion in estuaries. Gravitational term, salinity variations with respect to the water depth. and re-evaluation of , salinity boundary condition are examined. Especially. the improvements in stability and accuracy of the numerical algorithm are made by adopting the fractional step method for the dispersion term of the governing equation. The model being applied to the Keum River Esturary, physical and numerical properties of Manning's n and dispersion coefficients are analyzed. Salinity intrusion into the river, influence of upstream river inflows, and salinity distribution for spring/neap tide are also examined.

  • PDF

Measurements of Velocity Distribution Function in Circular Open Channel Flows by Stereoscopic PIV (3차원 PIV에 의한 원형 개수로 유동의 속도분포 함수 측정)

  • Yoon, Ji-In;Sung, Jae-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • For the first time, the present study has measured the velocity distribution function in circular open channel flow in a three-dimensional shape using a stereoscopic PIV system. For a given channel slope, water depth was varied from 30% to 80% of the channel diameter. Then, the characteristics of the velocity distribution function was compared according to the change of the water depth. Unlike a rectangular channel, the present experiment exhibited quite different shapes in the velocity distribution function whether the water depth is higher than 50% or not. Especially, the position of maximum velocity in the central and side wall changes in a different manner for the water depth above 50%. By differentiating the velocity distribution function, local wall friction coefficient was evaluated as a function of wall position. If the water depth goes down, the difference between the maximum and minimum values in the local wall friction coefficient increases, and the averaged value a1so increases.

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

ESTIMATION OF ENERGY & MOMENTUM COEFFICIENTS IN OPEN CHANNEL BY CHIU'S VELOCITY DISTRIBUTION EQUATION (Chiu의 유속공식에 의한 유속분포계수의 추정)

  • 추태호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.55-66
    • /
    • 1992
  • The energy and momentum coefficients ${\alpha}$ and ${\beta}$ are measures of homogenerity of velocity distribution in a chanel section. They indicate the effect of energy and momentum transport. However, in most practical applications, they are assumed to be unity due to the difficulty in estimating them. Efforts have been made in this study to estimate these coefficients and to develop equations for practical applications. The Prandtl-von Karman logarithmic equation as being used today has limitations and far-reaching assumptions. Therefore, this paper uses Chiu's velocity distribution equation which seems to be capable of serving as such an alternative, to estimate the velocity distribution and the energy and momentum coefficients, ${\alpha}$ and ${\beta}$ results are compared with those computed by other existing equations. For practical applications, this paper also uses Chiu's equation along with the Mannig's equation to calculate ${\alpha}$, ${\beta}$ without velocity data

Hydraulic Flood Routing using Linear Reservoir Model (선형저수지모형을 적용한 수리학적 홍수추적)

  • Jeon, Min-Woo;Cho, Young-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.787-796
    • /
    • 2002
  • Hydraulic flood routing was performed for unsteady flow in a natural river using Preissmann scheme. A Log-Pearson Type-Ⅲ hydrograph is chosen arbitrarily as the upstream boundary condition and lateral inflow hydrographs for sensitivity analysis. For the application with an actual river system, upstream and lateral inflow hydrographs were estimated by the linear reservoir model and the Manning's equation was used as the downstream boundary condition. The unsteady flow model using the linear reservoir model as the inflow hydrographs was applied to Bochung stream basin and gives good results, and is approved to be used for the runoff prediction. As results of the sensitivity analysis, the proposed model may help to estimate the roughness coefficients when using the unsteady flow model with lateral inflow combined with the linear reservoir model.

A Study on the Prediction of Discharge by Estimating Optimum Parameter of Mean Velocity Equation (평균유속공식의 최적매개변수 산정에 의한 유량예측에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5578-5586
    • /
    • 2012
  • The accurate estimation of discharge is very essential as the important factor of river design for the utilization and flood control, hydraulic construction design. The present discharge production is using the stage-discharge relationship curve in the river. The rating curve uses the method by predicting the discharge based on regression analysis using the measured stage and discharge data in a flood season. The method is comparatively convenient and has especially advantages in that it can predict the discharge having the difficulty of observation in a flood season. However, this method has basically room for improvement because the method only uses the relationship between stage and discharge, and doesn't reflect the hydraulic parameters such as hydraulic radius, energy slope, roughness, topography, etc.. Therefore, in this study, discharge was predicted using the convenient calculation method with empirical parameters of the Manning and Chezy equations, which were proposed by Choo et at (2011) in KSCE as a new methodology for estimating discharge in open channel. The proposed method can conveniently estimate empirical parameters in both of Manning and Chezy equations and the discharge is estimated in the open channels. There are proved by using data measured in meandering lab. channel and India canal and the accuracies show about determination coefficient 0.8. Accordingly, this method will be used in actual field if this study is continuously conducted.

Prediction of Stage Discharge Curve and Lateral Distribution of Unit Discharge in an Arbitrary Cross Section Channel with Floodplain Vegetation (홍수터 식생을 고려한 불규칙한 단면에서의 수위-유량 곡선 및 단위유량 횡분포 예측)

  • Kim, Tae-Beom;Jang, Ji-Yeon;Shin, Jae-Kook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.157-167
    • /
    • 2011
  • A numerical model was developed to predict the stage-discharge curve and lateral distribution of unit discharge in open channels with nonuniform cross section or compound open-channels. The governing equation is the one-dimensional momentum equation based on assumptions of the steady and uniform flow conditions in the longitudinal direction and the uniform water surface elevation in a cross section. Vegetative drag force term was included in governing equation in order to reflect the effect of floodplain vegetation on the flow characteristics. Finite element method was applied to obtain the numerical solution of the governing equation. Stage-discharge curve and lateral distribution of unit discharge for a given water surface are calculated based on input data, such as the cross sectional geometry, Manning's roughness coefficient, vegetative information and longitudinal slope of channel bed. The developed model was verified by comparing the calculated results with the observed data and the results of Darby and Thorne's(1996) model and the nonlinear k-$\epsilon$ model. The verified model was applied to estimate the upstream boundary conditions in two-dimensional flow model. The numerical results using laterally distributed unit discharge were compared with those obtained using uniformly distributed unit discharge in two-dimensional flow model.

Estimation of Muskingum-Cunge Parameters for Natural Streams (자연하천에 대한 Muskingum-Cunge 모형의 매개변수 산정)

  • Kim, Jin-Soo;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.233-243
    • /
    • 2010
  • A method is proposed of estimating Muskingum-Cunge parameters for natural streams using cross-sectional and longitudinal channel geometry and roughness coefficient data. Firstly, for various water-surface levels at a cross section cross-sectional areas and hydraulic radii are calculated. Corresponding discharges are then calculated using Manning's equation. This procedure is repeated for all cross-sections in the reach. Finally, routing parameters are estimated from the calculated cross-sectional area and discharge value pairs by regression analysis. The procedures for estimating Muskingum-Cunge parameters are applied to the South Han River. Flows calculated by Muskingum-Cunge model with estimated parameters showed much better agreement with those by dynamic wave model in peak discharge, time to peak discharge, and normalized RMS errors than those calculated by the HEC-1 Muskingum-Cunge model.

Calculation of Direct Runoff Hydrograph considering Hydrodynamic Characteristics of a Basin (유역의 동수역학적 특성을 고려한 직접유출수문곡선 산정)

  • Choi, Yun-Ho;Choi, Yong-Joon;Kim, Joo-Cheol;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • In this study, after the target basin was divided into both overland and channel grids, the travel time from center of each grid cell to watershed's outlet was calculated based on the manning equation. Through this process, volumetric discharge was calculated according to the isochrones and finally, the direct runoff hydrograph was estimated considering watershed's hydrodynamic characteristics. Sanseong subwatershed located in main stream of Bocheong basin was selected as a target basin. The model parameters are only two: area threshold and channel velocity correction factor; the optimized values were estimated at 3,800 and 3.3, respectively. The developed model based on the tuned parameters led to well-matching results between observed and calculated hydrographs (mean of absolute error of peak discharge: 3.41%, mean of absolute error of peak time: 0.67 hr). Moreover, the analysis results regarding histogram of travel time-contribution area demonstrates that the proposed model characterizes relatively well hydrodynamic characteristics of the catchment due to effective rainfall.

Estimation of Average Roughness Coefficients of Bocheong Stream Basin (보청천 유역의 평균조도계수 산정)

  • Jeon, Min-Woo;Lee, Hyo-Sang;Ahn, Sang-Uk;Cho, Young-Soo;Jeon, Man-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1306-1310
    • /
    • 2009
  • The roughness coefficients were estimated by the Manning's equation for the measured stage and flow velocity of Bocheong stream basin in Kum river. The relationships between the estimated roughness coefficients and the geomorphologic factors were formulated by the linear, logarithmic, exponential and power type function, thereafter correlation equations were presented. The correlation analysis was performed between the measured stream length and the basin area of Bocheong stream basin by the linear, logarithmic, exponential and power type function, and correlation equation for the stream length was given. The roughness coefficient has strong correlationship with stream slope, but low correlation coefficients with stream length and basin area. For the correlationship with the roughness coefficients and the stream slope, the logarithmic type function has the smallest correlation coefficient, on the other hand, the exponential type function has the largest correlation coefficient. For the relationship between the stream length and the basin area, the correlation coefficient of the logarithmic type function shows the smallest value, linear type function shows the largest value.

  • PDF