• Title/Summary/Keyword: mannanases

Search Result 10, Processing Time 0.024 seconds

Comparison of Acidic pH and Temperature Stabilities between Two Bacillus Mannanases Produced from Recombinant Escherichia coli (재조합 대장균으로부터 생산된 Bacillus 속 균주 유래 Mannanases의 내산성과 열안정성 비교)

  • Jeon, Ho Jin;Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • Two genes encoding the mannanase of Bacillus sp. YB-1401 and B. amyloliquefaciens YB-1402, which had been isolated at acidic pH as mannanase producers, were each cloned into Escherichia coli, and sequenced. Both mannanase genes consisted of 1,080 nucleotides, encoding polypeptides of 360 amino acid residues. The deduced amino acid sequences of the two mannanase genes differed by four amino acid residues different, and were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. Comparison of two mannanases produced from recombinant E. coli indicated that His-tagged mannanase of YB-1402 (HtMAN1402) was more stable than that of YB-1401 at acidic pH and high temperature. In particular, HtMAN1402 retained more than 50% of its activity at pH 3.0 after 4 h of pre-incubation, suggesting the enzyme is a valuable candidate for use as a feed additive. In addition, thermostability of the two mannanases was found to be enhanced by $Ca^{2+}$ ions.

Characterization of two β-mannanases from Cellulosimicrobium sp. YB-43 (Cellulosimicrobium sp. YB-43에 의해 생산되는 2종류 β-mannanase의 특성분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.263-270
    • /
    • 2015
  • A bacterial strain producing extracellular mannanases was isolated from soil of chestnut tree farm located in Gongju city of Korea by enrichment culture using Avicel as a carbon source. 16S rDNA sequence of the isolate YB-43 was highly homologous to those of genus Cellulosimicrobium strains with sequence similarities of above 99.6%. Mannanase productivity was significantly increased when the Cellulosimicrobium sp. YB-43 was grown in the presence of locust bean gum (LBG) or konjac. The mannanases were partially purified to be mannanase A (ManA) and mannanase C (ManC) by DEAE-Sepharose column and Q-Sepharose column chromatography from the culture filtrate of Cellulosimicrobium sp. YB-43 grown in LB medium supplemented with 0.7% LBG for 24 h. The partially purified ManA showed the highest activity at $55^{\circ}C$ and pH 6.5, while ManC activity was optimal at $65^{\circ}C$ and pH 7.5. ManA was stable up to $40^{\circ}C$ for 1 h, but ManC activity decreased significantly even after 1 h at $20^{\circ}C$. ManA and ManC showed difference from each other according to their substrate specificities and predominant products resulting from the mannanase hydrolysis for mannooligosaccharides. As a result, Cellulosimicrobium sp. YB-43 was found to produce two different kinds of mannanases.

Purification and Properties of ${\beta}-Mannanases$ from Germinated Guar Bean (${\beta}-Mannanase$ 군(群)의 정제(精製) 및 그들의 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Su-Rae
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.1-13
    • /
    • 1966
  • 1) Three ${\beta}-1$, 4-mannanases were isolated from germinated guar bean through extraction, ammonium sulfate fractionation, column chromatography on cellulose derivatives and gel filltration on Sephadex G-100. They were designated as ${\beta}-1$, 4-mannanase A,B and C, respectively, in the order of isolation. 2) These enzymes were different in several aspects such as pH optimum, effect of metal ions, adsorbability on cellulose derivatives, molecular weight, Michaelis constant toward reduced ivory nut mannan A, mode of action and extent of hydrolysis of the mannan. 3) ${\beta}-1$, 4-Mannanases A and C were proposed to be two different endo-enzymes of random-splitting type producing a series of oligosaccharides from ${\beta}-1$, 4-mannans. ${\beta}-1$, 4-Mannanase B was suggested to be possibly an exe-type enzyme catalyzing a stepwise splitting from the non-reducing end of ${\beta}-1$, 4-mannans to produce mannose. 4) Guaran was subjected to hydrolysis by the purified enzymes and the consequence was discussed in connection with structural requirements of the enzymes toward substituted ${\beta}-1$, 4-mannans and their role in germinating guar seeds.

  • PDF

Cloning and Strong Expression of a Bacillus subtilis WL-3 Mannanase Gene in B. subtilis

  • Yoon, Ki-Hong;Lim, Byung-Lak
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1688-1694
    • /
    • 2007
  • A gene encoding the mannanase of Bacillus subtilis WL-3, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and the nucleotide sequence of a 2.7-kb DNA fragment containing the mannanase gene was subsequently determined. The mannanase gene, designated manA, consisted of 1,080 nucleotides encoding a polypeptide of 360 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to glycosyl hydrolase family 26. The manA gene was strongly expressed in B. subtilis 168 by cloning the gene downstream of a strong B. subtilis promoter of plasmid $pJ27{\Delta}88U$. In flask cultures, the production of mannanase by recombinant B. subtilis 168 reached maximum levels of 300 units/ml and 450 units/ml in LB medium and LB medium containing 0.3% locust bean gum, respectively. Based on the zymogram ofthe mannanase, it was found that the mannanase produced by recombinant B. subtilis could be maintained stably without proteolytic degradation during the culture time.

Isolation of Mannanase-producing Bacteria, Bacillus subtilis WL-6 and WL-11, and Cloning and Characterization of Mannanase (Bacillus subtilis 분리균 2주 유래 mannanases의 특성 비교)

  • Yoon, Ki-Hong
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1113-1120
    • /
    • 2016
  • Two bacterial strains producing extracellular man nanase were isolated from doenjang, a traditionally fermented soybean paste in Korea. The isolates, WL-6 and WL-11, were identified as Bacillus subtiis on the basis of their 16S rRNA gene sequences, morphological, and biochemical properties. Two genes encoding the mannanase of both B. subtilis WL-6 and B. subtilis WL-11 were each cloned into Escherichia coli, and their nucleotide sequences were determined. Both mannanase genes consisted of 1,086 nucleotides, encoding polypeptides of 362 amino acid residues. The deduced amino acid sequences of the two WL-6 and WL-11 mannanases, designated Man6 and Man11, respectively, differed from each other by eight amino acid residues, and they were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The 26 amino acid stretch in the N-terminus of Man6 and Man11 was a predicted signal peptide. Both Man6 and Man11 were localized at the level of 94–95% in an intracellular fraction of recombinant E. coli cells. The enzymes hydrolyzed both locust bean gum and mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, forming mannobiose and mannotriose as predominant products. The optimal reaction conditions were 55°C and pH 6.0 for Man6, and 60°C and pH 5.5 for Man11. Man11 was more stable than Man6 at high temperatures.

Cloning of a Bacillus subtilis WL-7 Mannanase Gene and Characterization of the Gene Product

  • KWEUN , MIN-A;LEE, MI-SUNG;CHOI, JOON-HO;CHO, KI-HAENG;YOON, KI-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1295-1302
    • /
    • 2004
  • A gene encoding the mannanase of Bacillus subtilis WL-7, which had been isolated from Korean soybean paste, was cloned into Escherichia coli, and the gene product was purified from the culture filtrate of the recombinant E. coli. This mannanase gene, designated manA, consisted of 1,086 nucleotides, encoding a polypeptide of 362 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The molecular mass of the purified mannanase was 38 kDa as estimated by SDS-PAGE. The enzyme had a pH optimum at 6.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum, konjak, guar gum, and lichenan, while it did not exhibit activity towards yeast mannan, laminarin, carboxymethylcellulose, $\beta$­glucan, xylan, and para-nitrophenyl-$\beta$-mannopyranoside.

Cloning and Characterization of Mannanase Gene from Bacillus subtilis WL-8 (Bacillus subtilis WL-8의 Mannanase 유전자 클로닝과 특성분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.207-212
    • /
    • 2010
  • A bacterium producing the extracellular mannanase was isolated from Korean soybean paste. The isolate WL-8 has been identified as Bacillus subtilis on the basis on its 16S rRNA sequence, morphology and biochemical properties. The mannanase productivity of strain WL-8 was increased in LB broth by addition of wheat bran. The maximum mannanase productivity was reached to approximately 20 U/ml in LB medium supplemented with 6% wheat bran. A gene encoding the mannanase of WL-8 was cloned into Escherichia coli and its nucleotide sequence was subsequently determined. The mannanase gene consisted of 1,086 nucleotides encoding a polypeptide of 362 amino acid residues. The deduced amino acid sequence was highly homologous with those of several mannanases from B. subtilis belonging to GH family 26. Reaction temperature and pH profiles were investigated using the culture filtrate and cell-free extract of the recombinant E. coli carrying a WL-8 mannanase gene, respectively. Optimal conditions for the two fractions occurred at pH 5.5 and $60^{\circ}C$. The cell-free extract showed higher mannanase activity than the culture filtrate at above $60^{\circ}C$.

Molecular cloning and characterization of β-mannanase B from Cellulosimicrobium sp. YB-43 (Cellulosimicrobium sp. YB-43의 mannanase B 유전자 클로닝과 특성 분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.336-343
    • /
    • 2016
  • A mannanase gene was cloned into Escherichia coli from Cellulosimicrobium sp. YB-43, which had been found to produce two kinds of mannanase, and sequenced completely. This mannanase gene, designated manB, consisted of 1,284 nucleotides encoding a polypeptide of 427 amino acid residues. Based on the deduced amino acid sequence, the ManB was identified to be a modular enzyme including two carbohydrate binding domains besides the catalytic domain, which was highly homologous to mannanases belonging to the glycosyl hydrolase family 5. The N-terminal amino acid sequence of ManB, purified from a cell-free extract of the recombinant E. coli carrying a Cellulosimicrobium sp. YB-43 manB gene, has been determined as QGASAASDG, which was correctly corresponding to signal peptide predicted by SignalP4.1 server for Gram-negative bacteria. The purified ManB had a pH optimum for its activity at pH 6.5~7.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum (LBG), konjac and guar gum, while it did not exhibit activity towards carboxymethylcellulose, xylan, starch, and para-nitrophenyl-${\beta}$-mannopyranoside. The activity of enzyme was inhibited very slightly by $Mg^{2+}$, $K^+$, and $Na^+$, and significantly inhibited by $Cu^{2+}$, $Zn^{2+}$, $Mn^{2+}$, and SDS. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose, which was the most predominant product resulting from the ManB hydrolysis for mannooligosaccharides and LBG.

Cloning a Mannanase 26AT Gene from Paenibacillus woosongensis and Characterization of the Gene Product (Paenibacillus woosongensis으로부터 Mannanase 26AT 유전자의 클로닝과 유전자 산물의 분석)

  • Yoon, Ki-Hong
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1003-1010
    • /
    • 2017
  • An open reading frame coding for mannanase predicted from the partial genomic sequence of Paenibacillus woosongensis was cloned into Escherichia coli by polymerase chain reaction amplification, and completely sequenced. This mannanase gene, designated man26AT, consisted of 3,162 nucleotides encoding a polypeptide of 1,053 amino acid residues. Based on the deduced amino acid sequence, Man26AT was identified as a modular enzyme, which included a catalytic domain belonging to the glycosyl hydrolase family 26 and two carbohydrate-binding modules, CBM27 and CBM11. The amino acid sequence of Man26AT was homologous to that of several putative mannanases, with identity of 81% for P. ihumii and identity of less than 57% for other strains of Paenibacillus. A cell-free extract of recombinant E. coli carrying the man26AT gene showed maximal mannanase activity at $55^{\circ}C$ and pH 5.5. The enzyme retained above 80% of maximal activity after preincubation for 1 h at $50^{\circ}C$. Man26AT was comparably active on locust bean gum (LBG), galactomanan, and kojac glucomannan, whereas it did not exhibit activity on carboxymethylcellulose, xylan, or para-nitrophenyl-${\beta}$-mannopyranoside. The common end products liberated from mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, or LBG by Man26AT were mannose, mannobiose, and mannotriose. Mannooligosacchrides larger than mannotriose were found in enzymatic hydrolyzates of LBG and guar gum, respectively. However, Man26AT was unable to hydrolyze mannobiose. Man26AT was intracellularly degraded into at least three active proteins with different molecular masses by zymogram.

Gene cloning of β-mannanase C from Cellulosimicrobium sp. YB-43 and characterization of the enzyme (Cellulosimicrobium sp. YB-43으로부터 mannanase C 유전자의 클로닝과 효소 특성)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.126-135
    • /
    • 2018
  • The characteristics of enzyme and gene for mannanase B had been reported from Cellulosimicrobium sp. YB-43 producing some kind of mannanase. A gene coding for the enzyme, named mannanase C (ManC), was expected to be located downstream of the manB gene. The manC gene was cloned by polymerase chain reaction and sequenced completely. From this nucleotide sequence, ManC was identified to consist of 448 amino residues and contain a carbohydrate binding domain CBM2 besides a catalytic domain, which was homologous to mannanase belonging to the glycosyl hydrolase family 5. The catalytic domain of ManC showed the highest amino acid sequence similarity of 55% with the mannanases from Streptomyces sp. SirexAA-E (55.8%; 4FK9_A) and S. thermoluteus (57.6%; BAM62868). The His-tagged ManC (HtManC) lacking N-terminal signal peptide with hexahistidine at C-terminus was produced and purified from cell extract of recombinant Escherichia coli. The purified HtManC showed maximal activity at $65^{\circ}C$ and pH 7.5, with no significant change in its activity at pH range from 7.5 to 10. HtManC showed more active on konjac and locust bean gum (LBG) than guar gum and ivory nut mannan (ivory nut). Vmax and Km values of the HtManC for LBG were 68 U/mg and 0.45 mg/ml on the optimal condition, respectively. Mannobiose and mannotriose were observed on TLC as major products resulting from the HtManC hydrolysis of mannooligosacharides. In addition, mannobiose and mannose were commonly detected as the hydrolyzed products of LBG, konjac and ivory nut.