• Title/Summary/Keyword: manipulators

Search Result 765, Processing Time 0.031 seconds

Application of Fuzzy Logic to Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.14-19
    • /
    • 1997
  • In this paper, a new fuzzy sliding mode control algorithm is presented for trajectory control of robot manipulators. A fuzzy logic is applied to a sliding mode control algorithm to have the sliding mode gain adjusted continuously through fuzzy logic rules. With this scheme, te stability and the robustness of the proposed fuzzy logic control algorithm are proved and ensured by the sliding mode control law. The fuzzy logic controller requires only a few tuning parameters to adjust. Computer simulation results are given to show that the proposed algorithm can handle uncertain systems with large parameter uncertainties and external disturbances.

  • PDF

Force Reflecting and Compliant Control for Heavy-Duty Power Manipulators (고하증 원격조작기의 힘반영 유연성 제어)

  • Ahn, Sung-Ho;Yoon, Ji-Sup;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2907-2909
    • /
    • 2000
  • This paper proposes a force reflecting and compliant control scheme for the heavy-duty power manipulators with high ratio gear reducers at its joints. From the experimental results. it can be seen that the proposed scheme has an excellent compliant force control performance.

  • PDF

Ergonomic Analysis of Tele-operation Tasks and Remote Handling Devices for a Pyroprocessing Facility

  • Yu, Seung Nam;Lee, Jong Kwang;Kim, Sung Hyun;Park, Byung Suk;Kim, Ki Ho;Cho, Il Je
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-26
    • /
    • 2013
  • Objective: The aim of this study is ergonomic analysis of tele-operation tasks using modified remote handling devices dedicated to the cell of PRIDE(PyRoprocess Integrated inactive DEmonstration facility) in KAERI(Korea Atomic Energy Research Institute). Background: Tele-operation manipulators of the PRIDE are applied to perform the remote handling and management of pyroprocessing facilities. Generally, these kinds of systems are composed of master-slave system and its peripherals installed along a wall or ceiling of the cell, and the manipulators transmit the user's own motion to grippers directly. However, a user convenience and intuitiveness while operating the manipulators have not been fully considered in research fields. Method: This study tries to analyze the ergonomic performance of remote handling manipulators in the developed cell facility. It was included that the analysis of operator's capability for his/her own motion range of upper arm while manipulating the MSM, considerations of its manipulation margin and related tool modifications to improve the remote handling performance. Conclusion: The test results of several remote handling tasks performed in PRIDE are represented, and adequate operation strategies for the tele-operation system of hot-cell type facilities are proposed. Application: The knowledge represented in this study can be utilized to improve a tele-operation system operated in a large-scale hot-cell system.

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

The Tool Coordinate Adjustment Algorithm for Robot Manipulators with Visual Sensor (시각 센서에 의한 로봇 매니퓰레이터의 툴 좌표계 보정에 관한 연구)

  • 이용중;김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1453-1463
    • /
    • 1994
  • Recently many robot manipulators are used for various areas of industriesand factories. It has been frequently observed that the robot manipulator fails to complete the function when the object changes its original position, Due to the unexpected impacts and vibrations the center and direction of the object would be shifted in many real application. In this study, a visual sensing algorithm for the robot manipulator is proposed. The algorithm consists of two parts : Detection of the object migration and adjustments of the orobot manipulators Tool Coordinate System. The image filtering technique with visual sensor is applied for the first part of the algorithm. The change of illumination intensity indicates the object migration. Once the object migration is detected, the second part of the algorithm calculates the current position of the object. Then it adjusts the robot manipulators Tool Coordinate System. The robot manipulator and the Visual sensor communicate each other using interrupt technique via proposed algorithm. It has been observed that the proposed algorithm reduces the malfunction of a robot manipulator significantly. Thus it can provide better line balance-up of the manufacturing processes and prevent industrial accidents efficiently.

  • PDF

Trajectory Planning for Torque Minimization of Robot Manipulators Using the Lagrange Interpolation Method (라그랑지 보간법을 이용한 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획)

  • Luo, Lu-Ping;Hwang, Soon-Woong;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2370-2378
    • /
    • 2015
  • This paper proposes an algorithm using Lagrange interpolation method to realize trajectory planning for torque minimization of robot manipulators. For the algorithm, position constraints of robot manipulators should be given and the stability of robot manipulators should be satisfied. In order to avoid Runge's phenomenon, we set up time interpolation points using Chebyshev interpolation points. After that, we found suitable angle which corresponds to the points and then we got trajectories of joint's angle, velocity, acceleration using Lagrange interpolation method. We selected performance index for torque consumption optimization of robot manipulator. The method went through repetitive computation process to have minimum value of the performance index by calculated trajectory. Through the process, we could get optimized trajectory to minimize torque and performance index and guarantee safety of the motion for manipulator performance.

Trajectory Planning for Industrial Robot Manipulators Considering Assigned Velocity and Allowance Under Joint Acceleration Limit

  • Munasinghe, S.Rohan;Nakamura, Masatoshi;Goto, Satoru;Kyura, Nobuhiro
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.68-75
    • /
    • 2003
  • This paper presents an effective trajectory planning algorithm for industrial robot manipulators. Given the end-effector trajectory in Cartesian space, together with the relevant constraints and task specifications, the proposed method is capable of planning the optimum end-effector trajectory. The proposed trajectory planning algorithm considers the joint acceleration limit, end-effector velocity limits, and trajectory allowance. A feedforward compensator is also incorporated in the proposed algorithm to counteract the delay in joint dynamics. The algorithm is carefully designed so that it can be directly adopted with the existing industrial manipulators. The proposed algorithm can be easily programmed for various tasks given the specifications and constraints. A three-dimensional test trajectory was planned with the proposed algorithm and tested with the Performer MK3s industrial manipulator. The results verified effective manipulator performance within the constraints.

A New Device and Procedure for Kinematic Calibration of Parallel Manipulators

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1615-1620
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and formulations of cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.

  • PDF

Design of a Bridge Transported ServoManipulator System for a Radioactive Environment

  • Park, B.S.;Jin, J.H.;Ahn, S.H.;Song, T.G.;Kim, D.G.;Yoon, J.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2514-2518
    • /
    • 2003
  • The KAERI Spent Fuel Remote Technology Development (SFRTD) Department is developing the remote maintenance and repair equipment, which is used in a hot cell in an intense radiation field, as part of a project to develop the Advanced spent fuel Conditioning Process (ACP). Although several mechanical master-slave manipulators (MSMs) is mounted on the hot cell wall, their reach will be limited and cannot access areas for all the ACP equipment maintenance. A Bridge Transported ServoManipulator (BTSM) has been designed to overcome the limitation of access areas that is a drawback of MSMs for the ACP equipment maintenance. The BTSM system consists of four components: a transporter with telescoping tubeset, a slave manipulator, a master manipulator, and a remote control system. The BTSM system has been designed by Solid Edge that is a 3D computer-aided design (CAD) software, except for the remote control system. The master manipulator and the slave manipulator are kinematically similar in design, except for the handle and the tong, respectively. The manipulators have 6 degrees of freedom (DOF) plus the jaws motion. The transporter has traveling, traverse, and hoisting motion to position the slave manipulator.

  • PDF

Design of a Robust Controller of Robot Manipulators Using Vision System (비젼 시스템을 이용한 로봇 매니퓰레이터의 강인 제어기 설계)

  • Lee Young Chan;Jie Min Seok;Baek Joong Hwan;Lee Kang Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • In this paper, we propose a robust controller for robot manipulators with parametric uncertainties using feature-based visual servo control system. In order to improve trajectory error of the robot manipulators due to the parameter variation, integral action is included in the dynamic control of part in inner subroutine of the control system. This integral action also reduces feature error in the steady state. The stability analysis of the closed-loop system is shown by the Lyapunov method. The effectiveness of the proposed method is shown by simulation and experimental results on the 5 link robot manipulator with two degree of freedom.