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Application of Fuzzy Logic to Sﬂﬁdﬁng Mode
Control for Robot Manipulators

Jae-Sam Park

Abstract

In this paper, a new fuzzy sliding mode control algorithm is presented for trajectory control of robot manipulators. A fuzzy logic is
applied to a sliding mode control algorithm to have the sliding mode gain adjusted continuously through fuzzy logic rules. With this
scheme, the stability and the robustness of the proposed fuzzy logic control algorithm are proved and ensured by the sliding mode control

law. The fuzzy logic controller requires only a few tuning parameters to adjust. Computer simulation results are given to show that the

proposed algorithm can handle uncertain systems with large parameter uncertainties and external disturbances.

1. Introduction

Since Mamdani[6] and Mamdani and Assilian[7] firstly applied
fuzzy theory to control a laboratory model of a steam engine,
fuzzy control has been used successfully in a variety of
applications. However, it appears that one of the most difficult
theoretical issues in applying fuzzy logic to control system is that
the lack of stability analysis, and tuning a fuzzy logic controller
involves adjusting many parameters.

Recently, methodology, which uses in its idealized form
piecewise continuous feedback control laws, resulting in the state
trajectory ‘sliding’ along a discontinuity or sliding surface in the
state space, known as sliding mode control, has been researched.
The concept of sliding mode control has been studied in detail by
Utkin[10, 11], where it has been used to stabilize a class of
non-linear systems. Sliding mode control is effectively used in the
trajectory control of robot arms and has been studied by many
- researchers in recent years[3, 8, 12].

For faster manipulator dynamics in the presence of model
uncertainties such as parameter perturbations, unknown joint
frictions and inertias, and external disturbances, fixed controllers
cannot be implemented accurately. Fuzzy logic manipulator
control laws may alter the control signal to account for changes
in robot dynamics and disturbances in the environment.

The fuzzy logic theory in sliding mode control area is used to
improve the overall performance of the conventional sliding mode
control algorithms in recent years, for example[l, 4, 5). The
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algorithm in[1] uses a fuzzy rule base for tuning the thickness of
a boundary layer for sliding mode controller. With this scheme,
the tracking performance can be improved and good for rejection
of control chaﬁering phenomenon. However, large parameter
variation and disturbances cannot be handled. Other schemes,
introducing fuzzy inference into sliding mode control are
presented in[4, 5]. However, these schemes require multiple fuzzy
logic processing, thus the computation load required is very high,
for multi-input-multi-output plants such as multi-link robots.

In this paper, a fuzzy logic is applied to a sliding mode control
algorithm to have the sliding mode gain adjusted continuously
through fuzzy logic rules. With this scheme, the stability and the
robustness of the proposed fuzzy logic control algorithm are
proved and ensured by the sliding mode control law. The
algorithm presented in this paper requires only two input value
fuzzy regions and one output value fuzzy regions with nine fuzzy
control rules even for multi-link robot manipulators. Therefore,
the computation required to formulate the driving torque for
multi-link robots is reduced greatly. The presented algorithm has
other advantages that: fairly large parameter variation and
disturbances can be handled; only position and velocity terms
need to be measured to implement, hence, it can also be
applicable to most electromechanical (mechatronic) systems.

Computer simulation results are given to show that the
proposed algorithm can handle uncertain systems with large
parameter uncertainties and external disturbances.

The organization of this paper is as follows: section 2 presents
some mathematical issues of the control problem; section 3
presents the fuzzy sliding mode control algorithms; in section 4,
as an application example, a two link robot manipulator is chosen
to show that the proposed control scheme possesses good pro-
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perties under large parameter uncertainties and disturbances;
section 5 concludes the paper.

. Problem Formulation

Consider the rigid body dynamic n-link manipulator derived via
the Euler-Lagrange equations(see [2], and Figure 4):

M(q) g+ F(x)

F(x) )

I

T
Wa, @) a+Da+ G+,

where ge R” and 4 are joint angle and angular velocity, res-

nsin

pectively. M(g)e R is the inertia matrix, which is symmetric,
positive definite.  V(q, ¢)= R"™" contains centrifugal and
Coriolis terms. Dge R” and G(q)e R” describe viscous friction
and gravity, respectively. r,e R” represents the unknown

disturbances, such as static friction or Coulomb friction. For
simplicity, these terms are combined and expressed as F(x) in (1),
where x=[g, q]" is the state vector. Note that F(x) is the
nonlinear function which is not exactly known but the extent of
the imprecision on F(x) is upper bounded by a known continuous
function of x. re R”is the vector of input torques.

The control problem is to synthesize a control law for u such
that the state x traces the desired trajectory, x,=[g; g4  , with

a certain precision defined by
laa—di<r, || ga= dll<72. 750, 750

It is assumed that g/#, g,(H and g,(7) are well defined and

bounded for all operational time .
Define

e=q,—q, 2= e+tAe 1¥)]

with A= diag(A,, Ay, A,), A0 -
Then, from (1) and (2),

Mz=MAé+ ¢)+F—u 3

Eq.(3) cannot be given exactly due to the disturbances, modelling
uncertainties and unknown parameters, but upper bounds for the
norms of (3) can be estimated as follows.

Lemma 1

(a) There exists bounded differentiable functions 6(He R"
and bounded nonlinear functions (1), L,(e R" such that
2T [M(A e+ (id)+F]+—%zT Mz @
= AMall+ (h+ LDl Ve, g

(b) There exists constant 7>Q such that

2T [M(A e+ (]',,,)+F]+-%zzT Mz (5)
< gpldl, Va, g
with

¢=1+liall +1il* , ©)

Proof : Noting that g, and g4, are bounded, F(x) is a bounded
function at most quadratic in g, we have that g aﬁd q are
bounded on |ld| and | |l respectively. From (2), é¥.g—Ae
and thus  6(s) =[/~ T()]e(s) With T()=A(sI+A) . Denote
the H. norm of a stable transfer function by |- . Then, it
follows that | ¢||<|i2l] +1I T2l . Since T{(s) is stable, {{7|o - is
bounded and thus || ¢|] is bounded on |}zl . Now, it is clear that
there exist bounded nonlinear functions 6&(9),» (), r(f)e R"

such that
M(A e+ 4m)+F=6+rlldl+rl2l’ )

Moreover, without loss of generality, & can be chosen as differ-
entiable functions. Since M is bounded differentiable function of g
is bounded on ¢ . Thus, there exist bounded nonlinear functions
4(8), L()e R" such that (a) holds. Let 7 be the largest value

of ST aoll, SUP 14l and  SUP jin(all. Then, clearly (b)
holds. DAN

Note that z(s)=(s/+A)e, and (s/+A) ! is a strictly proper
and stable transfer function. Thus z()=0,V# ¢, &(—0 and

e($—0 . Therefore, the control problem becomes how to choose
the control law, such that |[zl|<e, where &)>0 is a predefined
tracking error precision (see [9]).

II. Configurations of Fuzzy Sliding Mode
Controllers

1. Control Law

The fuzzy sliding mode control law to compute the control
input for the uncertain system (1) is designed as

¢WT§W, ifllzll> e

¥= output of FLC
to satisfy @7, 8)
0<e<1

¢Uf—‘: , otherwise

u= ;
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Fig. 1. Fuzzy regions and boundary values of fuz'zy subsets after
- tuning, : :

Table 1. Fuzzy control rules after tuning for simulation of two-
link manipulator. ’ ' ‘
fiZI value fuzzy regions

SM MD LG .
AlZI SM Vs sM | MD
value fuzzy| _ —
regions 7R vs''| sM-| LG
PL vs | ™MD VL

The meaning of this table is presented as If
IZ |l =SM and AIZ]l=NL then make U=VS, etc.

with ¢ defined by (6). The structure of (8) is shown in Figure 4.

2. Fuzzy Logic Control (FLC)

The FLC input signals are ||z|] and change in the ||2||, i.e.
4ldl. The FLC output signal is change in the sliding mode
control gain ¥. It is generally known that the use of more
membership functions allows one to construct more nonlinear
relations. In" this paper, three membership functions associated
with each input variable and five membership functions for the
output variable. Therefore, the maximum number of fuzzy control
rules is 9. The membership functions associated with ||z, Az},
and ¥ are given in Figure 1. The relationship between the two
input fuzzy variables is expressed using nine IF..THEN... fuzzy

rules, which is summarized in Table 1. Then, we have the
following result. '

Theorem 1 : Consider the system (1) with the control law (8).
Let 7 be given by Lemma 1, and ¥ is the output of FLC to
satisfy ¥ 7. Then the closed-loop system is globally stable in
the sense that the tracking error z is globally bounded by

lell <2 ¢ | o )
Proof .: Choose a Lyapunov function

v=—t2 Mz ' | (10)
Differentiating (10) with i’espect to t and substituﬁng (3) gives

' v‘=—%z* Mz+zT[M(4 et q)+F—u] o ay

When |l2l[> e, from Lemma 1(b) and (8), & can be expressed as

s<H(r= Wil : T (1)

Note that ¥ is obtained from the fuzzy logic rule to satisfy ¥'>
7. Hence, <0 for any z with ||lzl>e. This implies that z is
bounded by |izll<e.

Thus after the transient reésponse, ||z|<e<1 . In this casé, u=¢
Uz e. Then, » can be expressed as z}s¢nllzi|—¢114]z|iz/e, or

v < $(r=Wall/ell - a3

In (13), we see that <0 for all ||2]|> ep/¥. This implies that z
is bounded by lld|l < e7/%. Note that ¥>7, thus we see that
€ 7/¥<e. Therefore, we can conclude that ||z is globally
bounded by (9). o AAN

3. Fuzzy Rule Inference and Defuzzification

Once the relationship between the two input variables (in this
paper, |lzl and Ail2|) is expressed, it is needed to evaluate
those relations using fuzzy inference. Fuzzy inference, or rule
evaluation, employs the composition rule called as min-max
inference of ‘fuzzy relations to calculate numerical conclusions to

‘linguistic rules based on system input values. Even though the

output of the algorithm is a fuzzy set, the output of the fuzzy
controller must be a single crisp’ value which will serve as input
to the controlled process (in this paper, the output of the fuzzy
controller will serve as the gain of the sliding mode controller).
Therefore, the algebraic manipulation procedure is required to
compute the degree of applicability of each rule and the final
crisp defuzzified control action at the given moment. Several
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Sliding mode gain
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Fig. 2. Defuzzification-Height method.

defuzzification methods have been developed such as COA(center
of area), MIM(mean of maxima), Height Method, etc. In this
paper, the Height Method is used. The expression to compute the
Height Method is in the following.

AicitAic;

LA e 14
where ¥ is the final output of fuzzy logic controller (FLC), and
the meaning of A, 4;, ¢, ¢; are degree of each membership and
centre of each region respectively as shown in Figure 2.

Note that the final output of FLC is the sliding mode gain ¥.
Then the gain ¥ is used to calculate the sliding model control
output u in (8). We see from theorem 1 that if parameters of the
FLC are adjusted so that the FLC output ¥ is obtained as ¥'> 7
for all operation time ¢z, the closed-loop system is guaranteed to
be stable in the sense that the tracking error is bounded by (9).

Note that'Eq.(S) is a sliding mode control algorithm with the
sliding mode gain ¥ is defined by fuzzy logic rule, and with
Q= {22(H=0} as the sliding surface. While the sliding mode
control has good robustness, the control law has to be disconti-
nuous across £2. So, &> 0 is chosen in algorithm (8) to eliminate
the chattering of the control law. With these control algorithms,
small tracking errors can be achieved by choosing a small ¢.
However, small ¢ with big ¥ will usually result in undesirable
vibration on the control signal. Therefore each fuzzy region
boundary values are required to be tuned to get a reasonably
good result. The boundary value also need to be subjectively
chosen so that each fuzzy subset could overlap with its neigh-
bours. This overlap can give a fuzzy controller smooth and stable

surface.
IV. An Application Example

As an application example, a two-link robot manipulator has
been simulated, controlled by the fuzzy sliding mode controller,
presented in this paper. The manipulator was modelled as a set of
nonlinear coupled differential equations (see [2], and Figure 4)

Mq) G+F(x) (15)
M@ a+Wq, @)a+Hp+ry

with F(x)=Wgq, ) d+G(@)+rs = R’, Me R*?, ve RY?,

Ge R, and T/ R? where

M= [ B+l B+ B420 hycos (a)) mglllgcos(qz)m:fs]
malhycos(az) +myl mall

V= [ —myllsin(a) @ —mohhsin(a) 4, mphhsin(ey) q;]
myl hsin(g,) 4 0

G = [ mlllgcos(a1)+mzeﬂzc05(al+a-:)+11605(41)]]

mahgeos(q, +42)

Ty = [ kysgn( a:.)

kysgn( az)

with m,, {, q, are mass, length, joint angle of link n respec-
tively, g is gravity and ¢ =cos{q,), s =sin(g,+g,) etc..
The desired trajectory is supposed to be

1+0.2sin(xf)
1—0.2cos(xt)

da
qa

for t=[0,8], and the disturbance r, was added in the form of

_[5sin(4xz)
fa= [ 5sin(dxd) 16)

Parameters used in the simulation were

ll=12=lm, m) = moe= lkg

While the manipulator was being operated, m, was changed from
lkg to 3kg at t = 2sec and 3kg to lkg at t = 4sec. The sampling
time was set to be 107sec and the controller parameters were
chosen to be

A=6I, &e=.04

Each fuzzy region boundary values after tuning are shown in
Figure 1, and the overall system structure is shown in Figure 4.

Figure 3 shows the simulation results under presented control
law Eq.(8): (a) position errors; (b) the sliding mode control gain
¥, ie. fuzzy controller outputs, for t=[0,8] ; (c) control torques
for each link of the manipulator.

As shown in Figure 3, tracking errors(position errors) are less
than 0.0058rad for no load change. Between t = 2sec and t =
4sec, the tracking errors are increased due to the additive load
(my) change, and ¥ were adjusted by the fuzzy logic controller
to reduce the tracking errors. We see that the tracking perfor-
mance is very good using the control law, presented in this paper.

Note that the simulation results achieved in the presence of the
disturbance of (16) over the interval t=[0,8] , indicate that the
proposed algorithm works effectively for both the given parameter
uncertainties and the disturbances.
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() Tracking errors V. Conclusions

In this paper, a sliding mode control algorithm .is presented,
and a fuzzy logic is applied to the sliding mode control to
perform the sliding mode gain is adjusted continuously tﬁrough
fuzzy logic rules for trajectory control of robot mampulators The
stability of the proposed fuzzy logxc controllers is proved and the
robustness is ensured by the sliding mode control law. From the

experimental computer simulation results, it can be seen that the

time(sec) proposed algorithm possesses good properties under . large
(b) Control inputs parameter uncertainties and disturbances, - and achieved a_ high ..
w0 : v . T ; ! performance control. '

For the implementation of presented algbrithm, only z.(ie e
and ¢) are required. Therefore, the presented algorithm is model
free, and can be applicable to most electromechanical (mechat-

ronic) systems.
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