• Title/Summary/Keyword: maneuvering target

Search Result 201, Processing Time 0.029 seconds

Intelligent Maneuvering Target Tracking Based on Noise Separation (잡음 구분에 의한 지능형 기동표적 추적기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2011
  • This paper presents the intelligent tracking method for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. K-means clustering and TS fuzzy system are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by K-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. While calculating expected value, the non-linearity of the maneuvering target is recognized as linear one by dividing acceleration and the capability of Kalman filter is kept in the filtering process. The error for the non-linearity is compensated by approximated acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

The Research of Naval Tracking Filter using IMM3 for Naval Gun Ballistic Computer Unit (IMM3를 이용한 사격제원계산장치 대함필터 연구)

  • Lee, Young-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.24-32
    • /
    • 2005
  • This paper describes the tracking filter performance for Naval Gun Ballistic Computation Unit(BCU). BCU needs tracing filter for gun firing. Using data of tracking sensor, BCU calculates the future position of Target and Gun order in the time of flight. In this paper, tracing filter is designed with interacting multiple model(IMM). The tracking algorithm based on the IMM requirers a considerable number of sub-model for the various maneuvering target in order to have a good performance. But, in the case of ship target, the maneuvering is restricted compared with the air target. Considering the maneuvering properties and adjusting the mode transition probabilities and the process noise of sub-model, We designed the IMM3 algorithm for Naval tracking filter with three sub-model.

Target Motion Analysis for Active/Passive Mixed-Mode Sonar Systems

  • Taek, Lim-Young;Lyul, Song-Taek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.5-172
    • /
    • 2001
  • Target Motion Analysis(TMA) for Passive Sonar Systems with bearing-only measurements needs to enhance system observability to improve target tracking performance by ownship maneuvering. However, tracking problem incurred by weak observaility result in slow convergence of the target estimates. On the other hand, active sonar systems do not have problem associated with system observaility. However, it drawback related to system survivability. In this paper, the algorithm that could be used in Active/passive Mixed-Mode Sonar Systems is proposed to analyze maneuvering target motion and to improve TMA performance. The proposed TMA algorithm is tested by a series of computer simulation runs and the results ...

  • PDF

Multi-sensor Single Maneuvering Target Tracking in Clutter using AMMPF (클러터를 고려한 다중 센서 환경에서의 AMMPF를 이용한 기동 표적 추적 알고리즘 연구)

  • Kim Da-Sol;Song Taek-Lyul;Oh Won-Chun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.479-482
    • /
    • 2004
  • In this article we consider a single maneuvering target Tracking algorithm in the presence of missing measurements and high clutter environments for multi-sensor target tracking problem. The tracking algorithm is based on the Particle filtering method to predict and update target states. Proposed is the AMM-PF(Auxiliary Multiple Model Particle Filter)[2] method for maneuvering target tracking to improve performance in track estimate and maintenance with a high level of uncertainty. The algorithm we propose is compared to the Extended Kalman Filter(EKF). A simulation study is included.

  • PDF

IMM Filterbank for Wideband-maneuvering Target Tracking (광대역 기동표적 대응 IMM 필터뱅크)

  • Lee, Jeong Cheor;Yu, Chang Ho;Choi, Jae Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.882-889
    • /
    • 2014
  • This paper deals with a filterbank based on the IMM (Interacting Multiple Model) that combines data from a sensor and uses them selectively depending on a level of maneuver. Furthermore, within the maneuver interval, the existing IMM filter has disadvantages such as unnecessary target estimation errors caused by using a constant velocity model and an increase of computation load because of a fixed structure. On the other hand, the proposed IMM filterbank overcomes these disadvantages by using three model groups and designs a filterbank to cope with a wideband-maneuvering target. The performances of the IMM filterbank was evaluated through comparison with the existing IMM via computer simulations. The results show good performances for a wideband-maneuvering target.

A Study on the TWS Tracking Filter for Multi-Target Tracking (다중표적 추적을 위한 TWS추적필터에 관한 연구)

  • 이양원;서진헌;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.411-421
    • /
    • 1992
  • In the conventional track while scan (TWS) system, there are two major functions to be performed : detection and tracking. These two functions are normally designed and optimised independently. So TWS algorithm ignores the available decision features that can help in resolving the plot-to-track association ambiguity. Therefore conventional TWS system cna't track the targets in a densed multi-target environment. This paper presents a new TWS algorithm for multi-target track to solve the existing TWS system problem in clutter environment. The algorithm proposed in this paper is derived by modifying the part of joint probabilistic data association (JPDA) algotithm to get the one to one correspondence instead of multiple correspondence and combined with maneuvering detection logic so that it could also track the low maneuvering targets. Simulations to confirm the performance are done in crossing, parallel and maneuvering target. The proposed algorithm was successfully tracking targets above target situations.

  • PDF

Performance Analysis of the Turning Acceleration Estimator, Input Estimation and Variable Dimension Filters for Tracking Maneuvers (회전가속도 추정기, 입력추정 및 가변차원 필터의 기동 추적 성능 해석)

  • Choi, Sung-Won;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2002
  • Maneuvering targets are difficult to track for the Kalman filter since the target model of tracking filter might not fit the real target trajectory and the statistical characteristics of the target maneuver are unknown in advance. In order to track such a highly maneuvering target, several schemes have been proposed and improved the tracking performance in some extent. Among those tracking schemes the Input Estimation (IE), Variable Dimension (VD) and Turning Acceleration Estimator (TAE) became popular. However, so far their tracking performances were analyzed individually and were not compared. In this paper, the tracking performances of the typical IE, VD and TAE schemes for a maneuvering target are compared. Monte-Carlo Simulations for three maneuvering profiles are carried out and the results are analyzed towards practical applications.

  • PDF

A DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target (기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the states of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

Suboptimal Kalman filter design with pseudomeasurements for maneuvering target tracking (목표물 추적을 위한 가측정치를 이용한 준최적 칼만필터의 설계)

  • 송택렬;안조영;박찬빈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.556-561
    • /
    • 1987
  • This paper presents a suboptimal Kalman filter design method for the problem of tracking a maneuvering target. The design method is essentially based on linear target dynamics and linear-like structured measurements called pseudomeasurements. The pseudomeasurements are obtained by manipulating the original nonlinear measurements algebraically. The resulting filter has computational advantages over other filters with similar performance. Monte Carlo computer simulation results are included to demonstrate the effectiveness of the proposed suboptimal filter associated with the target acceleration model.

  • PDF

GA based fuzzy modeling method for tracking a maneuvering target (기동 표적 추적을 위한 유전알고리즘 기반 퍼지 모델링 기법)

  • Noh, Sun-Young;Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2702-2704
    • /
    • 2005
  • This paper proposes the genetic algorithm (GA)-based fuzzy modeling method for intelligent tracking of a maneuvering target. When the maneuvering to turn or taking evasive action, the performance of the standard Kalman filter has been degraded because residual between the modeled target dynamics and the actual target dynamics. To solve this problem, the state prediction error is minimized by the intelligent estimation method. Then, this filter is corrected by measurement corrections which is the fuzzy system. The performance of the proposed method is compared with those of the input estimation(IE) technique through computer simulation.

  • PDF