• Title/Summary/Keyword: mandelbrot set

Search Result 18, Processing Time 0.021 seconds

On Constructing Fractal Sets Using Visual Programming Language (Visual Programming을 활용한 Fractal 집합의 작성)

  • Geum Young Hee;Kim Young Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.177-182
    • /
    • 2002
  • In this paper, we present a mathematical theory and algorithm consoucting some fractal sets. Among such fractal sets, the degree-n bifurcation set as well as the Julia sets is defined by extending the concept of the Mandelbrot set to the complex polynomial $Z^n$+c($c{\epsilon}C$, $n{\ge}2$). Some properties of the degree-n bifurcation set and the Julia sets have been theoretically investigated including the symmetry, periodicity, boundedness, and connectedness. An efficient algorithm constructing both the degree-n bifurcation let and the Julia sets is proposed using theoretical results. The mouse-operated software called "MANJUL" has been developed for the effective construction of the degree-n bifurcation set and the Julia sets in graphic environments with C++ programming language under the windows operating system. Simple mouse operations can construct ann magnify the degree-n bifurcation set as well af the Julia sets. They not only compute the component period but also save the images of the degree-n bifurcation set and the Julia sets to visually confirm various properties and the geometrical structure of the sets. A demonstration has verified the useful versatility of MANJUL.of MANJUL.

  • PDF

Superior Julia Set

  • Rani, Mamta;Kumar, Vinod
    • Research in Mathematical Education
    • /
    • v.8 no.4
    • /
    • pp.261-277
    • /
    • 2004
  • Julia sets, their variants and generalizations have been studied extensively by using the Picard iterations. The purpose of this paper is to introduce Mann iterative procedure in the study of Julia sets. Escape criterions with respect to this process are obtained for polynomials in the complex plane. New escape criterions are significantly much superior to their corresponding cousins. Further, new algorithms are devised to compute filled Julia sets. Some beautiful and exciting figures of new filled Julia sets are included to show the power and fascination of our new venture.

  • PDF

LOCATING AND COUNTING BIFURCATION POINTS OF SATELLITE COMPONENTS FROM THE MAIN COMPONENT IN THE DEGREE-n BIFURCATION SET

  • Geum Young-Hee;Kim Young-Ik
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.339-350
    • /
    • 2006
  • The bifurcation point where a satellite component buds from another component is characterized by the existence of the common tangent line between the two osculating components appearing in the degree-n bifurcation set. We investigate the existence, location and number of bifurcation points for satellite components budding from the main component in the degree-n bifurcation set as well as a parametric boundary equation of the main component of the degree-n bifurcation set. Cusp points are also located on the boundary of the main component. Typical degree-n bifurcation sets and their components are illustrated with some computational results.

A Construction of the Principal Period-2 Component in the Degree-9 Bifurcation Set with Parametric Boundaries (9차 분기집합의 2-주기 성분의 경계방정식에 관한 연구)

  • Geum, Young-Bee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1421-1424
    • /
    • 2006
  • By extending the Mandelbrot set for the complex polynomial $$M={c\in C\;:\; _{k\rightarrow\infty}^{lim}P_c^k(0)\;{\neq}\;{\infty}$$ we define the degree-n bifurcation set. In this paper, we formulate the boundary equation of a period-2 component on the main component in the degree-9 bifurcation set by parameterizing its image. We establish an algorithm constructing a period-2 component in the degree-9 bifurcation set and the typical implementations show the satisfactory result with Mathematica codes grounded on the analysis.

  • PDF

AN IMPROVED COMPUTATION OF COMPONENT CENTERS IN THE DECREE-n BIFURCATION SET

  • Geum, Young-Hee;Kim, Young-Ik
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.63-73
    • /
    • 2002
  • The governing equation locating component centers in the degree-n bifurcation set is a polynomial with a very high degree and its root-finding lacks numerical accuracy. The equation is transformed to have its degree reduced by a factor(n-1). Newton's method applied to the transformed equation improves the accuracy with properly chosen initial values. The numerical implementation is done with Maple V using a large number of computational precision digits. Many cases are studied for 2 $\leq$ n $\leq$ 25 and show a remarkably improved computation.

A PARAMETRIC BOUNDARY OF A PERIOD-2 COMPONENT IN THE DEGREE-3 BIFURCATION SET

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.43-57
    • /
    • 2003
  • The boundary of a typical period-2 component in the degree-3 bifurcation set is formulated by a parametrization of its image which is the unit circle under the multiplier map. Some properties on the geometry of the boundary are investigated including the root point, the cusp and the length as well as the area bounded by the boundary curve. The centroid of the area for the period-2 component was numerically found with high accuracy and compared with its center. An algorithm drawing the boundary curve with Mathematica codes is proposed and its implementation exhibits a good agreement with the analysis presented here.

  • PDF

On Constructing fractal Sets using Visual Programming Language (Visual Programming을 활용한 Fractal 집합의 작성)

  • Hee, Geum-Young;Kim, Young-Ik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.115-117
    • /
    • 2002
  • In this paper, the degree-n bifurcation set as well as the Julia sets is defined by extending the concept of the Mandelbrot set to the complex polynomial $z^{n}{\;}+{\;}c(c{\;}\in{\;}C,{\;}n{\;}\geq{\;}2)$. Some properties of the degree-n bifurcation set and the Julia sets have been theoretically investigated including the symmetry, periodicity, boundedness, connectedness and the bifurcation points as well as the governing equation for the component centers. An efficient algorithm constructing both the degree-n bifurcation set and the Julia sets is proposed using theoretical results. The mouse-operated software calico "MANJUL" has been developed for the effective construction of the degree-n bifurcation set and the Julia sets in graphic environments with C++ programming language under the windows operating system. Simple mouse operations can construct and magnify the degree-n bifurcation set as well as the Julia sets. They not only compute the component period, bifurcation points and component centers but also save the images of the degree-n bifurcation set and the Julia sets to visually confirm various properties and the geometrical structure of the sets. A demonstration has verified the useful versatility of MANJUL.

Implementation of Multicore-Aware Load Balancing on Clusters through Data Distribution in Chapel (클러스터 상에서 다중 코어 인지 부하 균등화를 위한 Chapel 데이터 분산 구현)

  • Gu, Bon-Gen;Carpenter, Patrick;Yu, Weikuan
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.129-138
    • /
    • 2012
  • In distributed memory architectures like clusters, each node stores a portion of data. How data is distributed across nodes influences the performance of such systems. The data distribution scheme is the strategy to distribute data across nodes and realize parallel data processing. Due to various reasons such as maintenance, scale up, upgrade, etc., the performance of nodes in a cluster can often become non-identical. In such clusters, data distribution without considering performance cannot efficiently distribute data on nodes. In this paper, we propose a new data distribution scheme based on the number of cores in nodes. We use the number of cores as the performance factor. In our data distribution scheme, each node is allocated an amount of data proportional to the number of cores in it. We implement our data distribution scheme using the Chapel language. To show our data distribution is effective in reducing the execution time of parallel applications, we implement Mandelbrot Set and ${\pi}$-Calculation programs with our data distribution scheme, and compare the execution times on a cluster. Based on experimental results on clusters of 8-core and 16-core nodes, we demonstrate that data distribution based on the number of cores can contribute to a reduction in the execution times of parallel programs on clusters.