• Title/Summary/Keyword: management 3.0

Search Result 10,143, Processing Time 0.055 seconds

Identification and Chromosomal Reshuffling Patterns of Soybean Cultivars Bred in Gangwon-do using 202 InDel Markers Specific to Variation Blocks (변이영역 특이 202개 InDel 마커를 이용한 강원도 육성 콩 품종의 판별 및 염색체 재조합 양상 구명)

  • Sohn, Hwang-Bae;Song, Yun-Ho;Kim, Su-Jeong;Hong, Su-Young;Kim, Ki-Deog;Koo, Bon-Cheol;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.396-405
    • /
    • 2018
  • The areas of soybean (Glycine max (L.) Merrill) cultivation in Gangwon-do have increased due to the growing demand for well-being foods. The soybean barcode system is a useful tool for cultivar identification and diversity analysis, which could be used in the seed production system for soybean cultivars. We genotyped cultivars using 202 insertion and deletion (InDel) markers specific to dense variation blocks (dVBs), and examined their ability to identify cultivars and analyze diversity by comparison to the database in the soybean barcode system. The genetic homology of "Cheonga," "Gichan," "Daewang," "Haesal," and "Gangil" to the 147 accessions was lower than 81.2%, demonstrating that these barcodes have potentiality in cultivar identification. Diversity analysis of one hundred and fifty-three soybean cultivars revealed four subgroups and one admixture (major allele frequency <0.6). Among the accessions, "Heugcheong," "Hoban," and "Cheonga" were included in subgroup 1 and "Gichan," "Daewang," "Haesal," and "Gangil" in the admixture. The genetic regions of subgroups 3 and 4 in the admixture were reshuffled for early maturity and environmental tolerance, respectively, suggesting that soybean accessions with new dVB types should be developed to improve the value of soybean products to the end user. These results indicated that the two-dimensional barcodes of soybean cultivars enable not only genetic identification, but also management of genetic resources through diversity analysis.

Effects of Temperature on the Development and Reproduction of Phaedon brassicae Baly (Coleoptera: Chrysomelidae) (좁은가슴잎벌레의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon Ahn;Kwang Ho Kim;Hong Hyun Park;Gwan Seok Lee;Jeong Hwan Kim;In-Hong Jeong
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • The brassica leaf beetle, Phaedon brassicae Baly (Coleoptera: Chrysomelidae), is one of the important pests infesting cruciferous vegetables. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of P. brassicae at four constant temperatures of 15, 20, 25 and 27.5℃ for immature life stage and five constant different temperatures of 10, 15, 20, 25 and 27.5℃ for adult stage. Eggs and larvae successfully developed next life stage at temperature tested. The development period of egg, larva, and pupa decreased as temperature increased. Lower developmental threshold (LDT) and thermal constant (K) were calculated using linear regression as 8.7℃ and 344.73DD, respectively. Lower and higher threshold temperature (TL and TH) from egg to adult emergence were estimated by Briere function as 5.3℃ and 40.4℃, respectively. Adults produced eggs at the temperature range between 10℃ and 27.5℃, and showed an estimated maximum number, ca. 627.5 eggs at 21.7℃. Adult oviposition models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed. Temperature-dependent development models and adult oviposition models would be useful components to understand the population dynamics of P. brassicae and to establish the strategy of integrated pest management in cruciferous crops.

An Analytical Study on Stem Growth of Chamaecyparis obtusa (편백(扁栢)의 수간성장(樹幹成長)에 관(關)한 해석적(解析的) 연구(硏究))

  • An, Jong Man;Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.4
    • /
    • pp.429-444
    • /
    • 1988
  • Considering the recent trent toward the development of multiple-use of forest trees, investigations for comprehensive information on these young stands of Hinoki cypress are necessary for rational forest management. From this point of view, 83 sample trees were selected and cut down from 23-ear old stands of Hinoki cypress at Changsung-gun, Chonnam-do. Various stem growth factors of felled trees were measured and canonical correlaton analysis, principal component analysis and factor analysis were applied to investigate the stem growth characteristics, relationships among stem growth factors, and to get potential information and comprehensive information. The results are as follows ; Canonical correlation coefficient between stem volume and quality growth factor was 0.9877. Coefficient of canonical variates showed that DBH among diameter growth factors and height among height growth factors had important effects on stem volume. From the analysis of relationship between stem-volume and canonical variates, which were linearly combined DBH with height as one set, DBH had greater influence on volume growth than height. The 1st-2nd principal components here adopted to fit the effective value of 85% from the pincipal component analysis for 12 stem growth factors. The result showed that the 1st-2nd principal component had cumulative contribution rate of 88.10%. The 1st and the 2nd principal components were interpreted as "size factor" and "shape factor", respectively. From summed proportion of the efficient principal component fur each variate, information of variates except crown diameter, clear length and form height explained more than 87%. Two common factors were set by the eigen value obtained from SMC (squared multiple correlation) of diagonal elements of canonical matrix. There were 2 latent factors, $f_1$ and $f_2$. The former way interpreted as nature of diameter growth system. In inherent phenomenon of 12 growth factor, communalities except clear length and crown diameter had great explanatory poorer of 78.62-98.30%. Eighty three sample trees could he classified into 5 stem types as follows ; medium type within a radius of ${\pm}1$ standard deviation of factor scores, uniformity type in diameter and height growth in the 1st quadrant, slim type in the 2nd quadrant, dwarfish type in the 3rd quadrant, and fall-holed type in the 4 th quadrant.

  • PDF

A Clinical Study of Hospitalized Infants 28 to 90 Days of Age with Fever without Source (원인 없는 열로 입원한 생후 28일에서 90일 사이 영아들에 대한 임상적 고찰)

  • Rye, Min Hyuk;Noh, Yn Il;Lee, Seong Hun;Lee, Sun Young;Hur, Nam Jin;Lee, Dong Jin
    • Pediatric Infection and Vaccine
    • /
    • v.8 no.2
    • /
    • pp.191-198
    • /
    • 2001
  • Purpose : The purpose of this study was to investigate clinical features of hospitalized infants 28~90 days of age with fever without source and to analyze those of young febrile infants using risk criteria for serious bacterial infection. Methods : The clinical features of 131 infants 28~90 days of age admitted to the Ulsan Dong-Kang General Hospital Pediatric Department because of fever(temperature ${\geq}38^{\circ}C$ rectally) without source, from January 2000 to December 2000, were investigated by retrospective chart review. The clinical features of 131 febrile infants were analyzed using Rochester criteria. Results : Among 131 cases, there were 60 cases(45.8%) of urinary tract infection, 33 cases (25.2%) of aseptic meningitis, 2 cases(1.5%) of bacteremia and 36 cases(27.5%) of no specific diagnosis. Among 131 cases, there were 57 cases(43.5%) in low risk group and 74 cases(56.5%) in not low risk one by Rochester criteria. A significant difference in the incidence of urinary tract infection, aseptic meningitis and no specific diagnosis was not found between both groups. Male to female ratio was 1.8 : 1. Sex ratio between both groups was not significantly different. Most febrile infant were noted in spring(35.1%) and the summer(36.7%). The peak incidence of aseptic meningitis was noted in May and June. The fever subsided mostly within 48~72 hours after administering antimicrobial agents(61.8~83.2%). A significant difference in duration of fever after administering antimicrobial agents was not found between both groups. Conclusion : A selected group of low risk infants 28~90 days of age with fever without source can be managed as outpatients provided that a thorough initial evaluation is performed, that parents can reliably monitor their infant closely at home and that careful follow up can be assured. Because bag collected specimens were more likely to yield indeterminate urine culture result, a suprapubic or catheter obtained urine specimen for culture is a necessary part of the evaluation of all febrile infants 28~90 days of age. The further prospective study on evaluation and management of young febrile infant should be performed in our hospital.

  • PDF

Community Ecological Study on the Quercus acuta Forests in Bogildo-Island (보길도(甫吉島) 붉가시나무림(林)의 군락생태학적(群落生態學的) 연구(硏究))

  • Kim, Chong-Young;Lee, Jeong-Seok;Oh, Kwang-In;Jang, Seok-Ki;Park, Jin-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.618-629
    • /
    • 2000
  • This study was carried out to investigate ecological niche of Quercus acuta communities in Bogildo-island from July to October, 1998. This island is occupied by a subtropical evergreen broad-leaved forests. The study on community ecology of Q. acuta, mostly dominant species of subtropical forests, is very important for successful forest management. Sampling areas were selected in 16 quadrats, dominated by Q. acuta to examine the vegetation characteristics(plant identification, D.B.H.) and environmental elements (microtopography, altitude, slope degree, aspect, illumination and soil physicochemical properties). On the basis of data from field surveys, importance values were calculated for the dominance of Q. acuta and volume growth was analyzed by tree ring widths. The results obtained were as follows ; 1. The lists of vascular plants in the investigations were identified as 54 families, 91 genera, 113 species, 9 varieties, 1 formae. It appeared that 45 kinds were evergreen, 6 kinds(Camellia japonica, Ligustrum japonicum, Eurya japonica, Smilax china, Trachelospermum asiaticum var. intermedium, Carex lanceolata) were commonly observed in all plots and 5 species(Cinnamomum japonicum, Ardisia japonica, Cymbidium goeringii, Dryopteris bissetiana, Viburnum erosum) were most highly observed in all plots(over 80%). 2. The dominating species per strata were, Quercus acuta, Castanopsis cuspidata sp. Quercus salicina, Pinus thunbergii, Prunus sargentii in tree layer, Camellia Japonica, Ligustrum japonicum, Quercus acuta, Eurya japonica, Castanopsis cuspidata sp. in subtree layer, Camellia japonica, Ligustrum japonicum, Smilax china, Cinnamomum japonicum, Viburnum erosum in shrub layer and Trachelospermum asiaticum var. intermedium, Ardisia japonica, Carex lanceolata, Camellia japonica(seedlings), Quercus acuta(seedlings) in herb layer, all in descending orders. 3. Quercus acuta could be suggested as shade intolerant tree, considering the distribution in southern, western, nothern and eastern slopes in the descending orders. 4. Mean relative illumination in the forest is 0.89 % and it is relatively low in brightness. 5. Sustainment of Quercus acuta community couldn't be confirmed by judging from their reverse J curve in even-aged forest, as shown in D.B.H. distribution analysis. 6. The result of annual ring width analysis(mean ; 2.44 mm) showed three stages, such as a gentle increasing(1~12 year ; 2.04 mm), a relatively steep increasing(13~22 year ; 2.95 mm) and decreasing or stagnating(23 year after ; 2.41 mm).

  • PDF

An Analysis of the Psychiatric Characteristics of the Alopecia Areata in Female (여성 탈모증의 정신의학적 특성 분석)

  • Lee, Kil-Hong;Na, Chul;Lee, Young-Sik;Lee, Chang-Hoon;No, Byung-In;Hong, Chang-Kwon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.8 no.1
    • /
    • pp.31-45
    • /
    • 2000
  • Objectives : The present study was performed to reveal differences between female and male cases of alopecia in their alopecia related variables such as patterns of hair loss, psychiatric characteristics, associate illnesses, and methods of treatment, and to use them as basic materials for proper management and early prevention of the alopecia prone cases. Methods : In order to analysis the gender difference in hair losses, the subjects were divided into two subgroups as the 51 cases of female alopecia and the 42 cases of male alopecia, who had visited to the department of psychiatry consulted from the department of dermatology, Yongsan hopital, ChungAng University, Seoul, Korea, from January 1998 to December 1998. In data analysis, the subjects were statistically assesed by chi-squre test and analysis of varaiance, through SPSS-$PC^+$ 9.0V. Results : 1) Female subjects were more likely showed lower socio-economical level including lower eonomical level, lower educational level, or lower occupational level in their parent's job, were more likely to have larger number of siblings and to have many sisters comparison to the male cases. 2) Female subjects were more likely visited to the department of dermatology, more history of alopecia in their female family members, lesser history of alopecia in their male family members, more loss of hairs in vertex or frontal region of scalp, lesser loss of hairs in occipital region, and lesser nail changes in comparison to the male cases. 3) Female subjects were more suffered from intra-familial conflicts and economical changes, or their introverted personality makeup, lesser likely suffered from changes of business and health changes, and showed lesser conflicts related with poorer adaptaion in their job life. 4) Female subjects were more likely diagnosed as depression or conversion disorders, more frequently complaint anxiety symptoms or depressive symptoms, higher level of anxiety index, lesser complaint somatization or obsessive compulsive symptoms, and lesser diagnosed as anxiety disorder in comparison to the male cases. 5) Female subjects were more likely tended to show personality makeup such as the introverted, the lie, the repressed, or the feminine trends than the male cases. 6) Female subjects were more significantly treated by antianxiety drug such as etizolam and dermatological therapies include tretinoin, and lesser treated by clotiazepam and prednicarbonate in comparison to the male cases. Conclusion : From the facts that The most important factors in developing hair loss in the female subjects in comparison to the male cases seems to be closely correlated with the serious psychopathology such as the presence of mental disorders including depression, the presence of complaining anxiety or depressive symptomatology, the presence of stressful life events such as intrafamilial life changes, and the presence of personality makeup such as the introverted, the lie, the repressed, or the feminine trends, the authors confirmed that dermatologists act as the primary care physician are in a unique position to recognize psychiatric comorbidity and execute meaningful intervention for female patients with the alopecia with psychiatrists.

  • PDF

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

A Study on the Effect of the Introduction Characteristics of Cloud Computing Services on the Performance Expectancy and the Intention to Use: From the Perspective of the Innovation Diffusion Theory (클라우드 컴퓨팅 서비스의 도입특성이 조직의 성과기대 및 사용의도에 미치는 영향에 관한 연구: 혁신확산 이론 관점)

  • Lim, Jae Su;Oh, Jay In
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.99-124
    • /
    • 2012
  • Our society has long been talking about necessity for innovation. Since companies in particular need to carry out business innovation in their overall processes, they have attempted to apply many innovation factors on sites and become to pay more attention to their innovation. In order to achieve this goal, companies has applied various information technologies (IT) on sites as a means of innovation, and consequently IT have been greatly developed. It is natural for the field of IT to have faced another revolution which is called cloud computing, which is expected to result in innovative changes in software application via the Internet, data storing, the use of devices, and their operations. As a vehicle of innovation, cloud computing is expected to lead the changes and advancement of our society and the business world. Although many scholars have researched on a variety of topics regarding the innovation via IT, few studies have dealt with the issue of could computing as IT. Thus, the purpose of this paper is to set the variables of innovation attributes based on the previous articles as the characteristic variables and clarify how these variables affect "Performance Expectancy" of companies and the intention of using cloud computing. The result from the analysis of data collected in this study is as follows. The study utilized a research model developed on the innovation diffusion theory to identify influences on the adaptation and spreading IT for cloud computing services. Second, this study summarized the characteristics of cloud computing services as a new concept that introduces innovation at its early stage of adaptation for companies. Third, a theoretical model is provided that relates to the future innovation by suggesting variables for innovation characteristics to adopt cloud computing services. Finally, this study identified the factors affecting expectation and the intention to use the cloud computing service for the companies that consider adopting the cloud computing service. As the parameter and dependent variable respectively, the study deploys the independent variables that are aligned with the characteristics of the cloud computing services based on the innovation diffusion model, and utilizes the expectation for performance and Intention to Use based on the UTAUT theory. Independent variables for the research model include Relative Advantage, Complexity, Compatibility, Cost Saving, Trialability, and Observability. In addition, 'Acceptance for Adaptation' is applied as an adjustment variable to verify the influences on the expected performances from the cloud computing service. The validity of the research model was secured by performing factor analysis and reliability analysis. After confirmatory factor analysis is conducted using AMOS 7.0, the 20 hypotheses are verified through the analysis of the structural equation model, accepting 12 hypotheses among 20. For example, Relative Advantage turned out to have the positive effect both on Individual Performance and on Strategic Performance from the verification of hypothesis, while it showed meaningful correlation to affect Intention to Use directly. This indicates that many articles on the diffusion related Relative Advantage as the most important factor to predict the rate to accept innovation. From the viewpoint of the influence on Performance Expectancy among Compatibility and Cost Saving, Compatibility has the positive effect on both Individual Performance and on Strategic Performance, while it showed meaningful correlation with Intention to Use. However, the topic of the cloud computing service has become a strategic issue for adoption in companies, Cost Saving turns out to affect Individual Performance without a significant influence on Intention to Use. This indicates that companies expect practical performances such as time and cost saving and financial improvements through the adoption of the cloud computing service in the environment of the budget squeezing from the global economic crisis from 2008. Likewise, this positively affects the strategic performance in companies. In terms of effects, Trialability is proved to give no effects on Performance Expectancy. This indicates that the participants of the survey are willing to afford the risk from the high uncertainty caused by innovation, because they positively pursue information about new ideas as innovators and early adopter. In addition, they believe it is unnecessary to test the cloud computing service before the adoption, because there are various types of the cloud computing service. However, Observability positively affected both Individual Performance and Strategic Performance. It also showed meaningful correlation with Intention to Use. From the analysis of the direct effects on Intention to Use by innovative characteristics for the cloud computing service except the parameters, the innovative characteristics for the cloud computing service showed the positive influence on Relative Advantage, Compatibility and Observability while Complexity, Cost saving and the likelihood for the attempt did not affect Intention to Use. While the practical verification that was believed to be the most important factor on Performance Expectancy by characteristics for cloud computing service, Relative Advantage, Compatibility and Observability showed significant correlation with the various causes and effect analysis. Cost Saving showed a significant relation with Strategic Performance in companies, which indicates that the cost to build and operate IT is the burden of the management. Thus, the cloud computing service reflected the expectation as an alternative to reduce the investment and operational cost for IT infrastructure due to the recent economic crisis. The cloud computing service is not pervasive in the business world, but it is rapidly spreading all over the world, because of its inherited merits and benefits. Moreover, results of this research regarding the diffusion innovation are more or less different from those of the existing articles. This seems to be caused by the fact that the cloud computing service has a strong innovative factor that results in a new paradigm shift while most IT that are based on the theory of innovation diffusion are limited to companies and organizations. In addition, the participants in this study are believed to play an important role as innovators and early adapters to introduce the cloud computing service and to have competency to afford higher uncertainty for innovation. In conclusion, the introduction of the cloud computing service is a critical issue in the business world.

  • PDF