• Title/Summary/Keyword: maltol derivatives

Search Result 2, Processing Time 0.015 seconds

Biological Activities of Ursi Fel's Component Ursodeoxycholic Acid and Its Derivatives (웅담 성분 Ursodeoxycholic Acid 유도체들의 생물활성)

  • Cha, Bae Cheon
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • Ursi Fel's component ursodeoxycholic acid (UDCA), a traditional medicine, is used for the treatment of hepatic diseases. UDCA derivatives prepared by conjugation with antioxidant moiety such as maltol, sesamol, eugenol, mesitol and 3,4-(methylenedeoxy)aniline were expected to have various biological activity caused by synergistic effect of UDCA. Therefore, in this study, it was conducted the study of the manufacture of the UDCA derivatives and their biological activity. As a result, UDCA derivatives showed weak antioxidant activity in TBA method in vitro compared to original agents. SJ-505, SJ-502 and SJ-504 showed the effect of reducing ALT, AST, sorbitol dehydrogenase and ${\gamma}-glutamyltransferase$ in $CCl_4-induced$ liver injury experiment in vivo, even if the effects are weaker than UDCA and silymarin of the control group.

Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents

  • Jeong Hun Cho;Myoung Chong Song;Yonghee Lee;Seung-Taek Noh;Dae-Ok Kim;Chan-Su Rha
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.593-603
    • /
    • 2023
  • Background: Korean Red Ginseng is a major source of bioactive substances such as ginsenosides. Efficacy of red ginseng extract (RGE), which contains not only saponins but also various non-saponins, has long been studied. In the water-soluble component-rich fraction of RGE (WS), a byproduct generated in the process of extracting saponins from the RGE, we identified previously unidentified molecules and confirmed their efficacy. Methods: The RGE was prepared and used to produce WS, whose components were isolated sequentially according to their water affinity. The new compounds from WS were fractionized and structurally analyzed using nuclear magnetic resonance spectroscopy. Physiological applicability was evaluated by verifying the antioxidant and anti-inflammatory efficacies of these compounds in vitro. Results: High-performance liquid chromatography confirmed that the obtained WS comprised 11 phenolic acid and flavonoid substances. Among four major compounds from fractions 1-4 (F1-4) of WS, two compounds from F3 and F4 were newly identified in red ginseng. The analysis results show that these compound molecules are member of the maltol-structure-based glucopyranose series, and F1 and F4 are particularly effective for decreasing oxidative stress levels and inhibiting nitric oxide secretion, interleukin (IL)-1β and IL-6, and tumor necrosis factor-α. Conclusion: Our findings suggest that a few newly identified maltol derivatives, such as red ginseng-derived non-saponin in the WS, exhibit antioxidant and anti-inflammatory effects, making them viable candidates for application to pharmaceutical, cosmetic, and functional food materials.