• Title/Summary/Keyword: malicious codes

Search Result 165, Processing Time 0.024 seconds

A Study of Countermeasures for Advanced Persistent Threats attacks by malicious code (악성코드의 유입경로 및 지능형 지속 공격에 대한 대응 방안)

  • Gu, MiSug;Li, YongZhen
    • Journal of Convergence Society for SMB
    • /
    • v.5 no.4
    • /
    • pp.37-42
    • /
    • 2015
  • Due to the advance of ICT, a variety of attacks have been developing and active. Recently, APT attacks using malicious codes have frequently occurred. Advanced Persistent Threat means that a hacker makes different security threats to attack a certain network of a company or an organization. Exploiting malicious codes or weaknesses, the hacker occupies an insider's PC of the company or the organization and accesses a server or a database through the PC to collect secrets or to destroy them. The paper suggested a countermeasure to cope with APT attacks through an APT attack process. It sought a countermeasure to delay the time to attack taken by the hacker and suggested the countermeasure able to detect and remove APT attacks.

  • PDF

Generating Call Graph for PE file (PE 파일 분석을 위한 함수 호출 그래프 생성 연구)

  • Kim, DaeYoub
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.451-461
    • /
    • 2021
  • As various smart devices spread and the damage caused by malicious codes becomes more serious, malicious code detection technology using machine learning technology is attracting attention. However, if the training data of machine learning is constructed based on only the fragmentary characteristics of the code, it is still easy to create variants and new malicious codes that avoid it. To solve such a problem, a research using the function call relationship of malicious code as training data is attracting attention. In particular, it is expected that more advanced malware detection will be possible by measuring the similarity of graphs using GNN. This paper proposes an efficient method to generate a function call graph from binary code to utilize GNN for malware detection.

A Study on Analysis of Malicious Code Behavior Information for Predicting Security Threats in New Environments

  • Choi, Seul-Ki;Lee, Taejin;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1611-1625
    • /
    • 2019
  • The emergence of new technologies and devices brings a new environment in the field of cyber security. It is not easy to predict possible security threats about new environment every time without special criteria. In other words, most malicious codes often reuse malicious code that has occurred in the past, such as bypassing detection from anti-virus or including additional functions. Therefore, we are predicting the security threats that can arise in a new environment based on the history of repeated malicious code. In this paper, we classify and define not only the internal information obtained from malicious code analysis but also the features that occur during infection and attack. We propose a method to predict and manage security threats in new environment by continuously managing and extending.

A Study on the Malware Realtime Analysis Systems Using the Finite Automata (유한 오토마타를 이용한 악성코드 실시간 분석 시스템에 관한 연구)

  • Kim, Hyo-Nam;Park, Jae-Kyoung;Won, Yoo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • In the recent years, cyber attacks by malicious codes called malware has become a social problem. With the explosive appearance and increase of new malware, innumerable disasters caused by metaphoric malware using the existing malicious codes have been reported. To secure more effective detection of malicious codes, in other words, to make a more accurate judgment as to whether suspicious files are malicious or not, this study introduces the malware analysis system, which is based on a profiling technique using the Finite Automata. This new analysis system enables realtime automatic detection of malware with its optimized partial execution method. In this paper, the functions used within a file are expressed by finite automata to find their correlation, and a realtime malware analysis system enabling us to give an immediate judgment as to whether a file is contaminated by malware is suggested.

A Study on the Analysis and Detection Method for Protecting Malware Spreading via E-mail (전자우편을 이용한 악성코드 유포방법 분석 및 탐지에 관한 연구)

  • Yang, Kyeong-Cheol;Lee, Su-Yeon;Park, Won-Hyung;Park, Kwang-Cheol;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.93-101
    • /
    • 2009
  • This paper proposes the detection method of spreading mails which hacker injects malicious codes to steal the information. And I developed the 'Analysis model' which is decoding traffics when hacker's encoding them to steal the information. I researched 'Methodology of intrusion detection techniques' in the computer network monitoring. As a result of this simulation, I developed more efficient rules to detect the PCs which are infected malicious codes in the hacking mail. By proposing this security policy which can be applicable in the computer network environment including every government or company, I want to be helpful to minimize the damage by hacking mail with malicious codes.

An Effective Malware Detection Mechanism in Android Environment (안드로이드 환경에서의 효과적인 악성코드 탐지 메커니즘)

  • Kim, Eui Tak;Ryu, Keun Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.305-313
    • /
    • 2018
  • With the explosive growth of smart phones and efficiency, the Android of an open mobile operating system is gradually increasing in the use and the availability. Android systems has proven its availability and stability in the mobile devices, the home appliances's operating systems, the IoT products, and the mechatronics. However, as the usability increases, the malicious code based on Android also increases exponentially. Unlike ordinary PCs, if malicious codes are infiltrated into mobile products, mobile devices can not be used as a lock and can be leaked a large number of personal contacts, and can be lead to unnecessary billing, and can be cause a huge loss of financial services. Therefore, we proposed a method to detect and delete malicious files in real time in order to solve this problem. In this paper, we also designed a method to detect and delete malicious codes in a more effective manner through the process of installing Android-based applications and signature-based malicious code detection method. The method we proposed and designed can effectively detect malicious code in a limited resource environment, such as mobile environments.

Selection of Detection Measures for Malicious Codes using Naive Estimator (단순 추정량을 이용한 악성코드의 탐지척도 선정)

  • Mun, Gil-Jong;Kim, Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • The various mutations of the malicious codes are fast generated on the network. Also the behaviors of them become intelligent and the damage becomes larger step by step. In this paper, we suggest the method to select the useful measures for the detection of the codes. The method has the advantage of shortening the detection time by using header data without payloads and uses connection data that are composed of TCP/IP packets, and much information of each connection makes use of the measures. A naive estimator is applied to the probability distribution that are calculated by the histogram estimator to select the specific measures among 80 measures for the useful detection. The useful measures are then selected by using relative entropy. This method solves the problem that is to misclassify the measure values. We present the usefulness of the proposed method through the result of the detection experiment using the detection patterns based on the selected measures.

JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code using Internal Function Hooking

  • Kim, Hyoung-Chun;Choi, Young-Han;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.766-783
    • /
    • 2012
  • Recently, many malicious users have attacked web browsers using JavaScript code that can execute dynamic actions within the browsers. By forcing the browser to execute malicious JavaScript code, the attackers can steal personal information stored in the system, allow malware program downloads in the client's system, and so on. In order to reduce damage, malicious web pages must be located prior to general users accessing the infected pages. In this paper, a novel framework (JsSandbox) that can monitor and analyze the behavior of malicious JavaScript code using internal function hooking (IFH) is proposed. IFH is defined as the hooking of all functions in the modules using the debug information and extracting the parameter values. The use of IFH enables the monitoring of functions that API hooking cannot. JsSandbox was implemented based on a debugger engine, and some features were applied to detect and analyze malicious JavaScript code: detection of obfuscation, deobfuscation of the obfuscated string, detection of URLs related to redirection, and detection of exploit codes. Then, the proposed framework was analyzed for specific features, and the results demonstrate that JsSandbox can be applied to the analysis of the behavior of malicious web pages.

A Study on Email Security through Proactive Detection and Prevention of Malware Email Attacks (악성 이메일 공격의 사전 탐지 및 차단을 통한 이메일 보안에 관한 연구)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.672-678
    • /
    • 2021
  • New malware continues to increase and become advanced by every year. Although various studies are going on executable files to diagnose malicious codes, it is difficult to detect attacks that internalize malicious code threats in emails by exploiting non-executable document files, malicious URLs, and malicious macros and JS in documents. In this paper, we introduce a method of analyzing malicious code for email security through proactive detection and blocking of malicious email attacks, and propose a method for determining whether a non-executable document file is malicious based on AI. Among various algorithms, an efficient machine learning modeling is choosed, and an ML workflow system to diagnose malicious code using Kubeflow is proposed.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.