• Title/Summary/Keyword: malicious attacks

Search Result 453, Processing Time 0.027 seconds

Transmission Performance of MANET under Multiple Blackhole Attacks (다중 블랙홀 공격이 있는 MANET의 전송성능)

  • Kim, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.783-786
    • /
    • 2015
  • Hole attack, which is disturbed transmission function through change of routing information, can cause critical results for MANET as non-infrastructure network. Backhole attack, as a typical hole attack, is one malicious attack which is disabled network transmission function by assumption of transmission data through modification of routing information. It is very important to evaluate transmission performance caused by blackhole attack, because transmission performance of MANET is affective with blackhole attack. In this paper, transmission performance is analyzed with MANET under multiple blackhole attacks caused multiple blackhole nodes. Computer simulation based on NS-2 is used as analysis tool and voice traffic is considered ad application service on MANET.

  • PDF

Tools for Web-Based Security Management Level Analysis (웹기반 보안 관리 수준 분석 도구)

  • Kim, Jeom-Goo;Choi, Kyong-Ho;Noh, Si-Choon;Lee, Do-Hyeon
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.85-92
    • /
    • 2012
  • Today, the typical web hacking attacks are cross-site scripting(XSS) attacks, injection vulnerabilities, malicious file execution and insecure direct object reference included. Web hacking security systems, access control solutions, access only to the web service and flow inside but do not control the packet. So you have been illegally modified to pass the packet even if the packet is considered as a unnormal packet. The defense system is to fail to appropriate controls. Therefore, in order to ensure a successful web services diagnostic system development is necessary. Web application diagnostic system is real and urgent need and alternative. The diagnostic system development process mu st be carried out step of established diagnostic systems, diagnostic scoping web system vulnerabilities, web application, analysis, security vulnerability assessment and selecting items. And diagnostic system as required by the web system environment using tools, programming languages, interfaces, parameters must be set.

Development of field programmable gate array-based encryption module to mitigate man-in-the-middle attack for nuclear power plant data communication network

  • Elakrat, Mohamed Abdallah;Jung, Jae Cheon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.780-787
    • /
    • 2018
  • This article presents a security module based on a field programmable gate array (FPGA) to mitigate man-in-the-middle cyber attacks. Nowadays, the FPGA is considered to be the state of the art in nuclear power plants I&C systems due to its flexibility, reconfigurability, and maintainability of the FPGA technology; it also provides acceptable solutions for embedded computing applications that require cybersecurity. The proposed FPGA-based security module is developed to mitigate information-gathering attacks, which can be made by gaining physical access to the network, e.g., a man-in-the-middle attack, using a cryptographic process to ensure data confidentiality and integrity and prevent injecting malware or malicious data into the critical digital assets of a nuclear power plant data communication system. A model-based system engineering approach is applied. System requirements analysis and enhanced function flow block diagrams are created and simulated using CORE9 to compare the performance of the current and developed systems. Hardware description language code for encryption and serial communication is developed using Vivado Design Suite 2017.2 as a programming tool to run the system synthesis and implementation for performance simulation and design verification. Simple windows are developed using Java for physical testing and communication between a personal computer and the FPGA.

Companies Entering the Metabus Industry - Major Big Data Protection with Remote-based Hard Disk Memory Analysis Audit (AUDIT) System

  • Kang, Yoo seok;Kim, Soo dong;Seok, Hyeonseon;Lee, Jae cheol;Kwon, Tae young;Bae, Sang hyun;Yoon, Seong do;Jeong, Hyung won
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.189-196
    • /
    • 2021
  • Recently, as a countermeasure for cyber breach attacks and confidential leak incidents on PC hard disk memory storage data of the metaverse industry, it is required when reviewing and developing a remote-based regular/real-time monitoring and analysis security system. The reason for this is that more than 90% of information security leaks occur on edge-end PCs, and tangible and intangible damage, such as an average of 1.20 billion won per metaverse industrial security secret leak (the most important facts and numerical statistics related to 2018 security, 10.2018. the same time as responding to the root of the occurrence of IT WORLD on the 16th, as it becomes the target of malicious code attacks that occur in areas such as the network system web due to interworking integration when building IT infrastructure, Deep-Access-based regular/real-time remote. The concept of memory analysis and audit system is key.

Detecting Android Malware Based on Analyzing Abnormal Behaviors of APK File

  • Xuan, Cho Do
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.17-22
    • /
    • 2021
  • The attack trend on end-users via mobile devices is increasing in both the danger level and the number of attacks. Especially, mobile devices using the Android operating system are being recognized as increasingly being exploited and attacked strongly. In addition, one of the recent attack methods on the Android operating system is to take advantage of Android Package Kit (APK) files. Therefore, the problem of early detecting and warning attacks on mobile devices using the Android operating system through the APK file is very necessary today. This paper proposes to use the method of analyzing abnormal behavior of APK files and use it as a basis to conclude about signs of malware attacking the Android operating system. In order to achieve this purpose, we propose 2 main tasks: i) analyzing and extracting abnormal behavior of APK files; ii) detecting malware in APK files based on behavior analysis techniques using machine learning or deep learning algorithms. The difference between our research and other related studies is that instead of focusing on analyzing and extracting typical features of APK files, we will try to analyze and enumerate all the features of the APK file as the basis for classifying malicious APK files and clean APK files.

Countermeasure against MITM attack Integrity Violation in a BLE Network (BLE 네트워크에서 무결성 침해 중간자 공격에 대한 대응기법)

  • Han, Hyegyeon;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.221-236
    • /
    • 2022
  • BLE protocol prevents MITM attacks with user interaction through some input/output devices such as keyboard or display. Therefore, If it use a device which has no input/output facility, it can be vulnerable to MITM attack. If messages to be sent to a control device is forged by MITM attack, the device can be abnormally operated by malicious attack from attacker. Therefore, we describes a scenario which has the vulnerabilities of the BLE network in this paper and propose countermeasure method against MITM attacks integrity violations. Its mechanism provides data confidentiality and integrity with MD5 and security key distribution of Diffie Helman's method. In order to verify the effectiveness of the countermeasure method proposed in this paper, we have conducted the experiments. ​As experiments, the message was sent 200 times and all of them successfully detected whether there was MITM attack or not. In addition, it took at most about 4.2ms delay time with proposed countermeasure method between devices even attacking was going on. It is expected that more secure data transmission can be achieved between IoT devices on a BLE network through the method proposed.

A Password Method Resistant to Shoulder Surfing Attacks (훔쳐보기 공격에 강인한 비밀번호 방식)

  • Seong, Jin-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.331-332
    • /
    • 2022
  • The previously used locking device is a PIN method and has a problem in that the password is exposed by malicious users. In other words, if attackers looks at lock passwords from the side, correct passwords are known. In this paper, we aim to solve these security problems in lock devices resistant to shoulder surfing attacks. The proposed encryption approach is designed so that attackers cannot know lock passwords. To this end, we use a hidden password method instead of directly entering a PIN-type password to prevent the correct password from being exposed to an attacker even if someone steals the lock password.

  • PDF

Adversarial Attacks and Defense Strategy in Deep Learning

  • Sarala D.V;Thippeswamy Gangappa
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.127-132
    • /
    • 2024
  • With the rapid evolution of the Internet, the application of artificial intelligence fields is more and more extensive, and the era of AI has come. At the same time, adversarial attacks in the AI field are also frequent. Therefore, the research into adversarial attack security is extremely urgent. An increasing number of researchers are working in this field. We provide a comprehensive review of the theories and methods that enable researchers to enter the field of adversarial attack. This article is according to the "Why? → What? → How?" research line for elaboration. Firstly, we explain the significance of adversarial attack. Then, we introduce the concepts, types, and hazards of adversarial attack. Finally, we review the typical attack algorithms and defense techniques in each application area. Facing the increasingly complex neural network model, this paper focuses on the fields of image, text, and malicious code and focuses on the adversarial attack classifications and methods of these three data types, so that researchers can quickly find their own type of study. At the end of this review, we also raised some discussions and open issues and compared them with other similar reviews.

DDPG-SDPCR: A DDPG-based Software Defined Perimeter Components Redeployment

  • Zheng Zhang;Quan Ren;Jie Lu;Yuxiang Hu;Hongchang Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2739-2763
    • /
    • 2024
  • In wide area SDP networks, the failure of SDP components caused by malicious attacks will be accompanied by different deployment locations, profoundly affecting network service latency. However, traditional deployment methods based on prior knowledge are no longer applicable to dynamic SDP networks. This article proposes a dynamic and dimensionally variable deployment mechanism DDPG-SDPCR for SDP components based on DDPG, which enhances the network's endogenous security capability and improves attack tolerance. Based on this, we constructed corresponding mathematical models for latency, load balancing, and attack tolerance. The DDPG-SDPCR mechanism dynamically deploys new SDP nodes to replace faulty nodes based on the real-time status of the network, thereby achieving imperceptible attack tolerance for users. We have implemented a wide area SDP prototype with endogenous security capabilities and evaluated it under different network topologies, traffic sizes, and network attacks. The evaluation results indicate that under high traffic conditions, our proposed redeployment mechanism outperforms the baseline by 36.42% in latency, and only increases by 19.24% compared to the non attacked situation.

Analysis of the Bogus Routing Information Attacks in Sensor Networks (센서 네트워크에서 AODV 라우팅 정보 변조공격에 대한 분석)

  • Lee, Myung-Jin;Kim, Mi-Hui;Chae, Ki-Joon;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.229-238
    • /
    • 2007
  • Sensor networks consist of many tiny sensor nodes that collaborate among themselves to collect, process, analyze, and disseminate data. In sensor networks, sensor nodes are typically powered by batteries, and have limited computing resources. Moreover, the redeployment of nodes by energy exhaustion or their movement makes network topology change dynamically. These features incur problems that do not appear in traditional, wired networks. Security in sensor networks is challenging problem due to the nature of wireless communication and the lack of resources. Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop suity mechanisms that can survive malicious attacks from "insiders" who have access to the keying materials or the full control of some nodes. In order to protect against insider attacks, it is necessary to understand how an insider can attack a sensor network. Several attacks have been discussed in the literature. However, insider attacks in general have not been thoroughly studied and verified. In this paper, we study the insider attacks against routing protocols in sensor networks using the Ad-hoc On-Demand Distance Vector (AODV) protocol. We identify the goals of attack, and then study how to achieve these goals by modifying of the routing messages. Finally, with the simulation we study how an attacker affects the sensor networks. After we understand the features of inside attacker, we propose a detect mechanism using hop count information.