
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, Sep. 2024                                           2739 
Copyright ⓒ 2024 KSII 
 

This research was supported by a research grant from the Science and Technology Innovation leading Talents 
Subsidy Project of Central Plains [Grant No. 244200510038]. We express our thanks to Prof. Hu who checked our 
manuscript. 
 
http://doi.org/10.3837/tiis.2024.09.014                                                                                                              ISSN : 1976-7277 

DDPG-SDPCR: A DDPG-based Software 
Defined Perimeter Components 

Redeployment   
 

Zheng Zhang1, Quan Ren2, Jie Lu2, Yuxiang Hu2* and Hongchang Chen2 
1 Institute of Information Technology, PLA Strategic Support Force Information Engineering University, 

Zhengzhou 450000 China 
[e-mail: 975644214@qq.com] 

2 Institute of Information Technology, PLA Strategic Support Force Information Engineering University 
Jianxue Street 7, Zhengzhou, Henan, China 

[e-mail: huyuxiangchn@163.com] 
*Corresponding author: Yuxiang Hu 

 
Received March 11, 2024; revised July 29, 2024; accepted August 19, 2024;  

published September 30, 2024 
 

 
Abstract 

 
In wide area SDP networks, the failure of SDP components caused by malicious attacks will 
be accompanied by different deployment locations, profoundly affecting network service 
latency. However, traditional deployment methods based on prior knowledge are no longer 
applicable to dynamic SDP networks. This article proposes a dynamic and dimensionally 
variable deployment mechanism DDPG-SDPCR for SDP components based on DDPG, which 
enhances the network's endogenous security capability and improves attack tolerance. Based 
on this, we constructed corresponding mathematical models for latency, load balancing, and 
attack tolerance. The DDPG-SDPCR mechanism dynamically deploys new SDP nodes to 
replace faulty nodes based on the real-time status of the network, thereby achieving 
imperceptible attack tolerance for users. We have implemented a wide area SDP prototype 
with endogenous security capabilities and evaluated it under different network topologies, 
traffic sizes, and network attacks. The evaluation results indicate that under high traffic 
conditions, our proposed redeployment mechanism outperforms the baseline by 36.42% in 
latency, and only increases by 19.24% compared to the non attacked situation. 
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  1. Introduction 

Software Defined Perimeter (SDP) [1] is a zero trust architecture [2], which provides 
enterprises with dynamic and flexible network security logical perimeter to isolate resources 
such as applications and services on insecure networks with unknown security threats. SDP is 
first defined by the CSA in 2014 as an abstraction of network perimeter from physical 
implementation to logical definition. The emergence of this model is in response to the surge 
in network devices and the increasing mobility of devices, leading to the gradual melting of 
traditional network boundaries. The SDP architecture provides a new type of security model 
that provides better protection by verifying the identity of resource visitors to prevent threats 
both inside and outside the boundary. By hiding resources from unauthorized network entities, 
SDP can effectively eliminate some malicious attacks, including violent attacks, network 
traffic attacks, and other attacks on [3-4]. The SDP architecture typically includes SDP 
components such as an SDP controller, SDP gateway, initiator host, and receiver host in 
hardware. The software includes single packet authentication algorithms, encryption 
algorithms, etc. In SDP networks, the principle of minimum privilege is implemented to 
encrypt network traffic so that all resources can be safely accessed without crossing boundaries, 
regardless of the user's location. Through an isolated, on-demand, and dynamically configured 
trusted logic layer, the SDP architecture can provide secure isolation and protection for internal 
network resources against malicious behavior by non authenticated users. 

However, in the face of malicious attacks targeting SDP components themselves, such as 
malicious tampering, vulnerability backdoor attacks, etc., once the malicious attacks lead to 
failure, a centralized SDP architecture will not be able to meet the normal security function 
services. Although the distributed SDP architecture [5] can avoid lightweight cyber attacks to 
a certain extent, it will still reduce its processing performance and increase the communication 
delay. With the increase of malicious attacks, the processing performance of SDP will further 
decline, and the security protection function provided by SDP will eventually fail. Therefore, 
how to improve the attack tolerance of SDP architecture and avoid single point of failure on 
the premise of ensuring the service function and communication delay has become the key of 
research. 

The SDP component which is logically centralized but physically distributed is a feasible 
solution. In SDP multi-component network architecture, the number and location of SDP 
components have a great impact on network performance, and its placement has become a 
challenge in the current research. Placement issues are not specific to the SDP architecture 
alone. This problem is also raised in SDN and Network Function Virtualization (NFV), that 
is, to find the most suitable deployment location of distributed SDN controller and resources 
of Virtualized Network Function (VNF) [6, 7]. In addition, to find the most suitable node in 
Named Data Networking (NDN) [8] architecture to play the role of NDN controller [9]. These 
problems have some common points, but also have their unique places. In principle, the 
deployment optimization of SDP components in Wide Area Network (WAN) means obtaining 
the number and placement location of SDP components, with the goal of optimizing such as 
minimizing delay [10, 11, 12], balancing load [13, 14, 15], and reducing energy consumption 
[16, 17]. In the previous methods, greedy or heuristic methods are used, and load balancing is 
achieved through one of the above three goals. However, existing traditional methods have 
not taken into account the special problems faced by SDP component deployment. The 
ultimate goal of deployment is to enable users to tolerate attacks without perception, rather 
than simply optimizing latency or energy consumption. With the development of deep 
reinforcement learning, algorithms based on Deep-Q-Network (DQN) have reduced the action 
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dimension of agent output, enabling DQN to better solve problems that require multi-
dimensional action output. However, when there is excessive load in the wide area SDP 
network or some SDP components suffer from network attack failures, it is necessary to 
temporarily add network equipment to ensure the normal service of users. In this case, the 
number of SDP components or switches may change. However, algorithms based on DQN 
limit the number of network nodes to a fixed value; Therefore, it cannot adapt to the dynamic 
changes in the number of network devices in malicious attack scenarios. 

In order to meet the requirements of processing speed and multiple optimization objectives 
for SDP component deployment, this paper proposes a dynamic and dimensionally variable 
optimization model based on Deep Deterministic Policy Gradient (DDPG-SDPCR). The 
model considers both minimum latency and attack tolerance, and balances traffic load. Deep 
Reinforcement Learning (DRL) allows network entities to learn and establish knowledge 
about network states, and to solve problems with large state and action spaces [18], achieving 
autonomous and efficient decision-making capabilities. Here, we proposed a wide area SDP 
architecture that has the ability to redeploy SDP components while considering potential 
network attack threats. We considered the data flow delay, link bandwidth and load in the 
network, as well as tolerance requirements, and designed a mechanism to consider the 
incremental deployment of SDP components in the scenario of SDP component failure after 
being attacked during user traffic forwarding. Unlike the node deployment scheme based on 
DQN, our proposed DDPG algorithm solves the constructed model and uses bit masks to 
adjust the effective dimensionality of actions in the DDPG algorithm, allowing the algorithm 
to operate when the number of deployed SDP components is variable. Specifically, DDPG-
SDPCR allows the dimensions of deployment nodes to be dynamically adjusted based on the 
decisions of network administrators, which means that the goal is to increase attack tolerance 
and reduce deployment costs as much as possible based on user insensitivity or reduced 
deployment increments. In addition, based on reinforcement learning algorithms, DDPG-
SDPCR does not require a large number of training samples and can obtain new data through 
exploration of the environment, and use the new data to repeatedly update and iterate the 
existing model. In the algorithm proposed in this article, random noise variables are also added 
to increase the exploration range to prevent getting stuck in local optima. 

The primary contributions of this study are summarized below.  
(1) We propose a wide area SDP framework with endogenous security capabilities, which 

can provide users with secure access to remote intranet resources over a wide area. In addition, 
considering potential network attacks, it enables to redeploy SDP components and meet user 
latency and bandwidth requirements after some SDP components fail due to malicious attacks. 

(2) We propose a dynamic and dimensionally variable SDP component redeployment 
mechanism DDPG-SDPCR, which can detect and remove failed SDP components after some 
SDP components fail due to malicious attacks based on consistency verification. Then, based 
on the redeployment algorithm, considering constraints such as network traffic, link bandwidth, 
and latency, suitable nodes in the network are selected as deployment locations for the new 
SDP components.The source code of DDPG-SDPCR implementation and the related 
algorithms will been released at Github. 

(3) We propose a wide area SDP prototype with endogenous security capabilities. 
Simulation results show that the redeployment of components in the wide area SDP 
architecture based on DDPG and bit mask algorithms outperforms the baseline by at least 
11.56% in terms of latency, link load, and attack tolerance. 

The rest of this article is organized as follows: related work can be found in Section 2. The 
problem statement and mathematical modeling will be explained in the Section 3. In Section 
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4, we provided a detailed explanation of the proposed algorithm and corresponding parameters. 
The evaluation results of the model are presented in Section 5. Finally, Section 6 concludes 
this study. 

2. Related Works 
This section provides an overview of the relevant work. Firstly, relevant work on potential 
mathematical problems is provided, followed by an introduction to the application of DRL in 
network edge or cloud placement problems. Finally, explanation is given on the universality 
and specificity of SDP component deployment problem. 

Heller et al. [19] first proposed the control plane deployment problem by analyzing the 
impact of controller placement on the average delay and maximum delay of the network. Since 
then, people have done a lot of work on it. In real life, the center of logistics network chooses 
the best location when the factory, warehouse or other equipment in a given network topology. 
Therefore, this problem is also known as the location problem of factories, facilities or 
warehouses. Generally, people use mixed integer linear programming, such as the software 
based on IBM decision optimization modeling for python [20] to model and solve it. If the 
optimization objective is the average value (delay or hops and other optimization objectives), 
the problem is classified as a k-means problem [21]. If the optimization goal is the maximum 
value, the problem is classified as a k-center problem [22]. The difference between the two is 
that the selected nodes are the average or random values in the cluster. Generally, the latter 
has a larger amount of calculation, while the former has the problem that the output result may 
not be in the set. Heller's work [19] provides a further discussion on this general problem. In 
[23] and [24], different aspects and different methods of facility location issues are also 
outlined, focusing on "uncertainty", such as uncertain flow demand or delay. In addition, there 
are deployment schemes based on density clustering [25] and heuristic algorithms for linear 
programming [26, 27, 28]. However, due to various constraints and heterogeneous variables 
in controller deployment, the optimization problem is NP hard. Moreover, these works focus 
on general and universal theoretical issues, which do not address the specific issues of device 
deployment in wide area networks, which involve multiple parameters. 

The application of DRL in the field of networks provides effective tools and new solutions 
for responding to dynamic changes in networks, optimizing the deployment of network 
devices and services. Intelligent agents can iteratively interact with random environments to 
find the optimal solution. Reza et al. [29] proposed a controller placement and allocation 
strategy based on reinforcement learning method, which includes a wide range of constraints, 
including elasticity, delay, load balancing and controller capacity. The author explained that 
they first proposed a machine learning method to solve the placement and allocation problem 
of multi-constraint elastic controllers. However, due to the traditional reinforcement learning 
(RL) method, the strategy has the problems of long learning time and slow convergence speed, 
which is difficult to be applied to large networks or delay sensitive networks. Alejandro et al. 
[30] proposed a VNF deployment mechanism based on DQN across single board computers 
(SBC) clusters. This mechanism selects the most appropriate node in multiple clusters, and 
deploys VNF according to the node's resource and event requirements to optimize the energy 
consumption in SBC. This research mainly considers resource cost and energy consumption, 
and does not optimize network indicators such as delay and load balancing. Li et al. [31] 
proposed an algorithm based on multi-agent DQN (MADQN) to realize the dynamic 
placement of controllers. The algorithm allows the control plane to change dynamically with 
the change of flow. In addition, the algorithm based on MADQN reduces the action dimension 
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of agent output, so that DQN can better solve the problem of multi-dimensional action output. 
However, the MADQN based algorithm uses DRL to deploy dynamic controllers. When the 
network load in a hot area is too large or some network equipment is disabled by network 
attack, network facilities (such as network access points) must be temporarily added to provide 
sufficient network service capacity. In this case, the number of network devices, such as 
switches, will change. However, the MADQN based algorithm limits the number of switches 
to a fixed value. Therefore, it cannot adapt to the application scenario of dynamic changes in 
the number of network devices. Yu et al. [32] proposed an edge computing and caching 
solution based on DDPG. The solution considers the diversity of services requested by users 
and the dynamic communication conditions between Multi-access Edge Computing (MEC) 
server and users, so as to jointly optimize task scheduling and resource allocation in continuous 
action space. The simulation results show that the DRL inspired resource allocation scheme is 
obviously superior to other comparison strategies, and achieves the optimal resource allocation 
scheme. Unfortunately, although the above literature considers a variety of network 
parameters and constraints, it does not study and design the faults caused by cyber attacks. 
 

Table 1. Comparison of existing methods. 
 Delay 

optimization 

Load 
balancing 
optimization 

Energy 
consumption 

optimization 

Attack 
tolerance Comment 

Clustering [21,22,25] √ × × × Single optimization 
objective 

Heuristic [26,27,28] √ × √ × Large calculation and time 
consumption 

DQN [29,30,31] √ √ × √ Fixed vector dimension 
 

For the deployment of network equipment or service functions in SDN, the above research 
considers network parameters or user requirements such as delay and load, so that the control 
plane can meet various constraints and achieve load balance between different controllers. 
Some of the methods proposed in the research even take into account the dynamic changes of 
the network, so that its deployment scheme can be dynamically adjusted according to the 
changes of the network state. However, the above research on equipment or service placement 
for SDN and SDP component deployment has a relationship of universality and particularity. 
The particularity of SDP component deployment is to consider the function failure caused by 
malicious attacks and minimize the impact. The above research does not consider the impact 
of network attack, hence its deployment scheme cannot adapt to the real environment faced by 
SDP wide area network. 

3. Problem Statement and Mathematical Modeling 
As mentioned earlier, the way to solve the SDP component deployment problem is to obtain 
the number and location of SDP components to be deployed, so that they have the lowest cost 
and delay, as well as a certain degree of attack tolerance. In this section, we first introduce the 
wide area SDP architecture. Then, we introduce the delay, load balancing and tolerance model 
of SDP component deployment. 
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Fig. 1.  The structure of wide area SDP network. 

 
 

3.1 Wide Area SDP architecture 
 
Fig. 1 shows the wide area SDP network structure. Based on SDN structure, the structure is 
divided into three layers: data plane, control plane and application plane. The data plane 
includes mobile devices, edge servers, cloud computing centers, switches and other network 
devices. User equipment can access the edge SDP gateway through the access point to obtain 
SDP controller authentication, and then obtain computing or data storage services. The edge 
server and cloud center use wired network connection. The network services of devices in the 
data plane are managed through the control plane. The application layer provides resource 
management, uninstall services and other services. 
 

Fig. 2. Solution 1 under attack. Fig. 3. Solution 2 under attack. 
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Fig. 2 and Fig. 3 show two solutions when SDP components are attacked and fail. Red is 
the failed SDP component, dark blue is the normal SDP component, and sky blue is the newly 
deployed SDP component. Fig. 2 shows the redirection strategy based on greedy algorithm, 
that is, when SDP component 1 is attacked and fails, the communication path from the 
initiating host to the intranet resources is redirected from ① → ② to ① → ② → ③ → ④. In 
this way, the communication path bypasses the attacked SDP component at the cost of 
increasing the delay and the load of SDP component 2. Fig. 3 shows the redeployment strategy 
based on the DDPG-SDPCR algorithm proposed in this study, that is, when SDP component 
1 is attacked and fails, the new SDP component 3 is redeployed by analyzing the current 
network state. The communication path from the initiating host to the intranet resources is 
changed from ① → ② to ① → ② → ③. In this way, the destination SDP node is replaced 
while reducing the additional delay as much as possible. 
 

3.2 Mathematical Model 
In this study, we use a directed acyclic graph with variable nodes to represent the network 
topology. Here, the maximum number of nodes is n. Each node is a switch, and SDP 
components can be deployed on any node. Graph G = (Q;  E)shows the network topology, 
where q is the set of switches Q = {q1, q2, . . . , qN}, and E is the set of edges between nodes. 
The number of SDP components in the network is m, and the SDP component set is marked 
as G = {g1, g2, . . . , gM}. In addition, we set a binary variable 𝑋𝑋𝑖𝑖,𝑗𝑗 to represent the connection 
between node 𝑖𝑖 and node 𝑗𝑗. 
 

                         𝑋𝑋𝑖𝑖,𝑗𝑗 = �
0,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛 𝑤𝑤𝑖𝑖𝑛𝑛ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗;
1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛 𝑤𝑤𝑖𝑖𝑛𝑛ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗.                                    (1) 

3.2.1 Delay Model  
SDP architecture provides secure and stable identity authentication and connection 
establishment services for all kinds of users, in which there are many low latency applications. 
Therefore, SDP must process network requests under certain delay constraints. SDP covers a 
wide area. In addition, some nodes are far away and the network load distribution is uneven. 
These characteristics lead to different data forwarding times of switches and different 
processing times of SDP components for network requests. Therefore, the component 
deployment in SDP architecture must consider propagation delay and transmission delay. 
 
1. Propagation delay 

As mentioned above, in the wide area SDP network, some nodes are far away from each 
other, causing a large propagation delay in these nodes. Therefore, the centralized SDP 
component cannot handle the network requests from these devices in time. The propagation 
delay between nodes and the distance between nodes are related to the signal transmission 
speed of the link between nodes. Therefore, the propagation delay between node 𝑖𝑖 and node 𝑗𝑗 
is expressed as follows: 

                                        𝑛𝑛𝑖𝑖,𝑗𝑗
𝑝𝑝 = 𝑋𝑋𝑖𝑖,𝑗𝑗∙𝑑𝑑𝑖𝑖,𝑗𝑗

𝑣𝑣𝑖𝑖,𝑗𝑗
                                                                     (2) 

 
  𝑛𝑛𝑖𝑖,𝑗𝑗 is the distance between node 𝑖𝑖 and node 𝑗𝑗, and 𝑣𝑣𝑖𝑖,𝑗𝑗 is the propagation speed between node 
𝑖𝑖 and node 𝑗𝑗. 
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2. Transmission delay 
In the wide area SDP network, wired connections are used between switches and SDP 

gateways, between switches and switches, and between SDP controllers and SDP gateways. 
In the wired network, due to the stability of the network environment, the interference between 
different devices can be ignored. Therefore, the transmission delay between node 𝑖𝑖 and node 𝑗𝑗 
is defined as follows: 

𝑛𝑛𝑖𝑖,𝑗𝑗𝑡𝑡 = 𝑋𝑋𝑖𝑖,𝑗𝑗∙𝑉𝑉𝑖𝑖,𝑗𝑗
𝐵𝐵𝑖𝑖,𝑗𝑗

                                                               (3) 

 
  𝑉𝑉𝑖𝑖,𝑗𝑗 is the amount of data between node 𝑖𝑖 and node 𝑗𝑗, and 𝐵𝐵𝑖𝑖,𝑗𝑗 is the link bandwidth between 
node 𝑖𝑖 and node 𝑗𝑗. Therefore, the complete link delay from node 𝑖𝑖 to node 𝑗𝑗 is defined as: 

 
𝑛𝑛𝑖𝑖,𝑗𝑗 = 𝑛𝑛𝑖𝑖,𝑗𝑗

𝑝𝑝 + 𝑛𝑛𝑖𝑖,𝑗𝑗𝑡𝑡                                                              (4) 
 

For SDP component node 𝑖𝑖, we define its node delay 𝑛𝑛𝑖𝑖 as the sum of the delays experienced 
by the network request flow with it as the access point, namely: 

 
𝑛𝑛𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗

𝐽𝐽
𝑗𝑗=1                                                              (5) 

 
where, 𝐽𝐽 is the number of network request flows with node 𝑖𝑖 as the access end. 
We take the maximum delay of all SDP component nodes as 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚, 

 
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = max

1≤𝑖𝑖≤𝑀𝑀
{𝑛𝑛𝑖𝑖}                                                      (6) 

 

3.2.2 Link Bandwidth Utilization Limitation and Load Balancing Model 
In SDN network, bandwidth is a limited system resource on which control flow and data flow 
are transmitted. Therefore, only a limited amount of traffic can be transmitted in each link. In 
addition, when the link is overloaded, the network performance will decline sharply, and the 
packet loss rate of data transmission will also increase sharply. In addition, the effective 
throughput of the network decreases, and the total delay caused by data retransmission will 
also increase. In extreme cases, link congestion will result in local deadlocks that cannot be 
used. Therefore, in order to make full use of bandwidth resources and ensure that the link is 
not overloaded, the bandwidth utilization of the link must be controlled within a reasonable 
range. 

The bandwidth utilization of link k between two directly connected nodes can be defined as 
follows: 

𝜂𝜂𝑘𝑘 = 𝑓𝑓𝑘𝑘

𝐵𝐵𝑘𝑘
                                                                (7) 

 
where, 𝑓𝑓𝑘𝑘 is the traffic size of link k and 𝐵𝐵𝑘𝑘 is the bandwidth of link k. 
Due to the difference of path planning and initial access point location, the traffic size on 

each link will be different. Here, we use the standard deviation of traffic to measure the load 
difference between SDP components. The load size of all links of an SDP component, the 
average value and standard deviation of the load of all SDP components are defined as follows: 
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𝜙𝜙𝑗𝑗 =
∑ 𝑓𝑓𝑘𝑘
𝐾𝐾𝑗𝑗
𝑘𝑘=1
𝐾𝐾𝑗𝑗

                                                         (8) 

 

𝜙𝜙𝑚𝑚𝑣𝑣𝑎𝑎 =
∑ 𝜙𝜙𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑀𝑀
                                                      (9) 

 

𝛥𝛥𝜙𝜙 = �∑ �𝜙𝜙𝑗𝑗−𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎�
2𝑀𝑀

𝑗𝑗=1

𝑀𝑀
                                             (10) 

 
where, 𝐾𝐾𝑗𝑗 is the total number of requests received by SDP components 𝑔𝑔𝑗𝑗. The smaller the 
standard deviation 𝛥𝛥𝜙𝜙, the more balanced the load of SDP gateway in the network. 
 

3.2.3 SDP Component Attack Tolerance Model 
In order to ensure the continuous and stable operation of SDP architecture, it is necessary to 
maintain sufficient attack tolerance on the network link between SDP components and 
protected network resources. SDP components have high attack tolerance and can 
continuously maintain links with internal network resources and external access users in case 
of malicious attacks. In the SDP architecture with SDN enabled, the control flow and data flow 
use the same link to transmit data. Therefore, the attack tolerance of SDP components is related 
to (i) the recovery time of cleaning and restarting after SDP components are attacked and failed, 
that is, the node tolerance; and (ii) the tolerance of SDP component deployed node  of all links. 
 
1. Node tolerance and deployment cost 

Based on the types of SDP components, the recovery time of cleaning and restarting is 
different. In addition to human factors, we generally believe that the more expensive SDP 
components are, the shorter the recovery time is. Table 2 lists the relationship between the 
price Pr and recovery time Tr of the five SDP components assumed in this study. 
 

Table 2. The relationship between price and recovery time. 
Type Price Time of Recovery 
1 1200 150 
2 2000 120 
3 2500 80 
4 6500 40 
5 12000 25 

 
We define the node tolerance 𝑅𝑅𝑖𝑖𝑛𝑛 of node i as a function of recovery time Tr, 

 
𝑅𝑅𝑖𝑖𝑛𝑛 = 𝑛𝑛𝑇𝑇𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚−𝑇𝑇𝑇𝑇𝑖𝑖                                               (11) 

 
In addition, we need to define and calculate the cost of deploying SDP components. 

 
𝑃𝑃𝑃𝑃 = ∑ 𝑃𝑃𝑃𝑃𝑖𝑖M

𝑖𝑖=1                                                (12) 
 

2. Edge tolerance  
In this study, SDP components are connected by wired network. In a wired network, the 

links between nodes may not be connected due to communication link failure. In addition, 
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SDN control information and data information are transmitted using the same network. 
Therefore, the higher the link load, the greater the possibility of control information delay 
arrival. The physical failure probability of the link is expressed in 𝑃𝑃𝑘𝑘𝑙𝑙 , and the link tolerance 
𝑅𝑅𝑘𝑘𝑙𝑙  in the path is defined as follows: 

 
𝑅𝑅𝑘𝑘𝑙𝑙 = �1 − 𝑃𝑃𝑘𝑘𝑙𝑙� ∙ 𝑇𝑇𝑇𝑇𝑛𝑛ℎ �

1
𝜂𝜂𝑘𝑘
�                                      (13) 

 
𝑇𝑇𝑇𝑇𝑛𝑛ℎ(𝑥𝑥) = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
                                                                  (14) 

 
where, 𝜂𝜂𝑘𝑘 is the bandwidth utilization of the k-th link. The greater the network traffic, the 
lower the link tolerance. Since both network traffic 𝑓𝑓𝑘𝑘 and link bandwidth 𝐵𝐵𝑘𝑘 are real numbers 
that are not less than zero, that is, 𝜂𝜂𝑘𝑘 positive real numbers, the range of activation function 
𝑇𝑇𝑇𝑇𝑛𝑛ℎ is between 0 and 1, which decreases as the independent variable increases and decreases. 
Therefore, we use this function to express the relationship between link tolerance and network 
traffic. 

There can be multiple paths from the external network access node to the internal network 
access node. We assume that there are m paths between nodes 𝑖𝑖 and 𝑗𝑗, one of the paths r has 
𝑛𝑛𝑇𝑇 sub links, and express the tolerance of the sub link k on this path as 𝑅𝑅𝑘𝑘𝑙𝑙 . Thus, the path 
tolerance between node 𝑖𝑖 and node 𝑗𝑗 is defined as the product of the link tolerance of each hop, 
and the average link tolerance is defined as the average value of the link tolerance of all paths. 
For an SDP component node 𝑖𝑖, its edge tolerance is defined as the average tolerance of all 
paths that can be selected by the network flow with 𝑖𝑖 as the external network or internal 
network access node. 

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑙𝑙,𝑇𝑇 = ∏ 𝑅𝑅𝑘𝑘𝑙𝑙

𝑛𝑛𝑟𝑟
𝑘𝑘=1                                                  (15) 

 

𝑅𝑅𝑖𝑖,𝑗𝑗𝑙𝑙 =
∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑙𝑙,𝑟𝑟𝑚𝑚
𝑟𝑟=1

𝑚𝑚
                                                   (16) 

 

𝑅𝑅𝑖𝑖𝑙𝑙 =
∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑙𝑙𝐽𝐽
𝑗𝑗=1

𝐽𝐽
                                                      (17) 

 
Where m is the number of paths between access point 𝑖𝑖 and access point 𝑗𝑗, and 𝐽𝐽 is the 

number of other ends of all network flows with SDP component 𝑖𝑖 as the access end. 
To sum up, the attack tolerance of SDP components should be combined with the tolerance 

of its nodes and the tolerance of connected links, which is defined as follows: 
 

𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑛𝑛 + 𝑅𝑅𝑖𝑖𝑙𝑙                                                    (18) 
 

The average attack tolerance of all SDP components in the network is defined as: 
 

𝑅𝑅 =
∑ 𝑅𝑅𝑖𝑖𝑖𝑖∈𝑉𝑉𝑎𝑎

�𝑉𝑉𝑎𝑎�
                                                       (19) 

3.3 Model Establishment 
In the network, the occurrence of malicious attacks and the size of data flow load vary with 
the region and time. In the area where the SDP component fails or the data flow load is too 
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high due to the attacked network, the user authentication or legal access delay increases with 
the increase of data transmission delay. Therefore, when deploying SDP components, we must 
pay attention to the maximum average delay from SDP components in different regions to user 
network equipment. Specifically, when deploying SDP components, we must optimize the 
delay, link load, tolerance and deployment cost. To sum up, the optimization problem of 
deploying SDP components is shown as follows: 

 
𝑚𝑚𝑖𝑖𝑛𝑛 𝑧𝑧 = 𝜇𝜇1𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜇𝜇2𝛥𝛥𝜙𝜙 − 𝜇𝜇3𝑅𝑅 + 𝜇𝜇4𝑃𝑃𝑃𝑃                               (20) 

 
                                       𝑖𝑖. 𝑛𝑛. : 𝐶𝐶1:  𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3 + 𝜇𝜇4 = 1                                           (21) 

 
                                                      𝐶𝐶2: 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚                                                      (22) 

 
                                                       𝐶𝐶3: 𝛥𝛥𝜙𝜙 ≤ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚                                                       (23) 

 
                                                   𝐶𝐶4: 𝑖𝑖 ∈ 𝑉𝑉𝑎𝑎,𝑅𝑅𝑖𝑖 ≥ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛                                                   (24) 

 
                                             𝐶𝐶5: ∀𝑖𝑖 ∈ [1,𝑀𝑀],𝑃𝑃𝑃𝑃𝑖𝑖 ≤ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚                                            (25) 

 
(21) indicates that the sum of the weights is equal to 1. Here, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3and 𝜇𝜇4 represent the 

impact of delay, load difference, attack tolerance and deployment cost on optimization 
objectives respectively. (22) indicates that the maximum delay from the user equipment, that 
is, the initiating host, to the SDP component cannot exceed 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. In addition, (23) indicates 
that the load difference between SDP components (expressed in the form of standard deviation 
of bandwidth utilization) cannot exceed 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚. (24) indicates that the attack tolerance of each 
SDP component cannot be less than 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛. 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖  represents the maximum delay of all SDP 
components from the external network access point to the SDP component of the internal 
network resource to be accessed, and R represents the average attack tolerance of all SDP 
components. 

4. Algorithm and Parameter 
In this study, we focus on the dynamic deployment of SDP components after the SDP 
components fail due to malicious attacks. Therefore, we must first traverse the candidate nodes, 
measure their delay, load balance, attack tolerance and other indicators, and then dynamically 
deploy the required number of SDP components according to the network status. 

4.1 Introduction to DDPG 

SDP component deployment is a Multiple Objective Combinatorial Optimization problem 
(MOCO) [33] and NP hard problem. Heuristic algorithm can be used to solve MOCO problem. 
However, these algorithms are easy to fall into local optimization. In addition, as the network 
state is constantly changing with the network load and malicious attacks, SDP components 
must be deployed according to the dynamic changes in the network. Therefore, it is very 
difficult to solve dynamic SDP component deployment using heuristic algorithm. 

In contrast, reinforcement learning is more suitable for solving MOCO problems. DDPG 
algorithm [34] is a DRL algorithm that can output multidimensional actions. Due to the large 
number of nodes and complex states in the real network, SDP component deployment has a 
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huge state space and reconciliation space. While other DRL algorithms, such as Q-learning 
[35] with the increase of state space and action space, the size of q-table increases continuously, 
that is, the problem of dimension explosion occurs. Thus, the time required to find the feasible 
solution in the q-table is increasing, which will greatly affect the efficiency of the algorithm. 
DQN combines Q-learning with Convolutional Neural Networks (CNN) [36] to solve the 
problem of dimension explosion to a certain extent. However, DQN [37] has the problem of 
multi-dimensional output difficulty. DQN usually selects the action with the highest Q-value 
as the output, but it cannot output other actions with the highest Q-value, that is, the subsequent 
output is no longer the optimal solution. DDPG has the advantage of large state space and 
action space. Each deployment scheme of SDP component deployment is a multidimensional 
solution. A complete deployment solution can be output using DDPG algorithm. Therefore, 
each output is guaranteed to be optimal for the current state without high computational and 
storage costs. 

To sum up, we use DDPG based algorithm to calculate SDP component deployment. In 
addition, we add different random numbers to each dimension of DDPG algorithm to improve 
the exploration ability of the algorithm. The corresponding state space, action space and 
reward are defined as follows. 
 

4.2 Parameter setting 

4.2.1 Space of State 
The state space reflects the changes of the network state based on the deployment scheme at 
different times, and is an N×5 matrix . We define the state space of time 𝑛𝑛 as follows: 

 
𝑆𝑆𝑡𝑡 = �𝑆𝑆𝑞𝑞1

𝑡𝑡 ,𝑆𝑆𝑞𝑞2
𝑡𝑡 , . . . , 𝑆𝑆𝑞𝑞𝑁𝑁

𝑡𝑡 �𝑇𝑇 = (𝐷𝐷𝑡𝑡,𝑇𝑇𝑡𝑡 ,𝑅𝑅𝑡𝑡,𝛷𝛷𝑡𝑡,𝑃𝑃𝑃𝑃𝑡𝑡)                                    (26) 
 

where N is the number of nodes in the SDP network, and 𝑆𝑆𝑞𝑞𝑖𝑖 is  a column vector with a 
length of N, representing the current time state of the node 𝑞𝑞𝑖𝑖, including the direction and size 
of data outflow, delay, attack tolerance, load size, and deployment cost. The definition of 
network status 𝑆𝑆𝑞𝑞𝑖𝑖 is as follows: 

 
𝑆𝑆𝑞𝑞𝑖𝑖
𝑡𝑡 = �𝑛𝑛𝑞𝑞𝑖𝑖

𝑡𝑡 , 𝑛𝑛𝑞𝑞𝑖𝑖
𝑡𝑡 ,𝑅𝑅𝑞𝑞𝑖𝑖

𝑡𝑡 ,𝜙𝜙𝑞𝑞𝑖𝑖
𝑡𝑡 ,𝑃𝑃𝑃𝑃𝑞𝑞𝑖𝑖

𝑡𝑡 �𝑇𝑇                                                (27) 
 

It is worth noting that when t=0, 𝑆𝑆𝑡𝑡 indicates the initial state of the network. We define the 
initial state as that the user request flow starts to forward the data flow and plan the path 
according to the Dijkstra algorithm [38] and the shortest path principle. 

In addition,  𝐷𝐷𝑡𝑡 defines the data outflow direction and size of each node at time t. Its value 
represents the size of the data volume, and the position represents the outflow direction, that 
is, the flow to the node. Therefore, 𝐷𝐷𝑡𝑡 = (𝑛𝑛0𝑡𝑡 ,𝑛𝑛1𝑡𝑡 , . . . ,𝑛𝑛𝑁𝑁𝑡𝑡 )𝑇𝑇. 𝑇𝑇𝑡𝑡 defines the delay of each node 
at time t, that is, the total delay sum of the access node is taken as this node, so 𝑇𝑇𝑡𝑡 =
(𝑛𝑛0𝑡𝑡 , 𝑛𝑛1𝑡𝑡 , . . . , 𝑛𝑛𝑁𝑁𝑡𝑡 )𝑇𝑇 . 𝑅𝑅𝑡𝑡  defines the attack tolerance of each node at time t, hence 𝑅𝑅𝑡𝑡 =
(𝑅𝑅0𝑡𝑡 ,𝑅𝑅1𝑡𝑡 , . . . ,𝑅𝑅𝑁𝑁𝑡𝑡 )𝑇𝑇. 𝛷𝛷𝑡𝑡 defines the load size of each node at time t, that is, the sum of the loads 
of the link to which the SDP component is connected, therefore, 𝛷𝛷𝑡𝑡 = (𝜙𝜙0𝑡𝑡 ,𝜙𝜙1𝑡𝑡 , . . . ,𝜙𝜙𝑁𝑁𝑡𝑡 )𝑇𝑇. 𝑃𝑃𝑃𝑃𝑡𝑡 
defines the cost of deploying SDP components at each node at time t, therefore, 𝑃𝑃𝑃𝑃𝑡𝑡 =
(𝑃𝑃𝑃𝑃0𝑡𝑡 ,𝑃𝑃𝑃𝑃1𝑡𝑡 , . . . ,𝑃𝑃𝑃𝑃𝑁𝑁𝑡𝑡 )𝑇𝑇. All the above variables except 𝐷𝐷𝑡𝑡, when the node is not a deployment 
node, their values are set to 0, that is, other N dimensional column vectors can have at most M 
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non-zero values. 

4.2.2 Space of Action 
The action space represents the change strategy of network state at each step. In this study, it 
refers to the position vector of SDP components planed to be deployed. No more than M SDP 
components can be deployed in the SDP network. We use binary numbers to express the 
deployment of SDP components. The algorithm measures the priority of deployment location 
according to the reward, and uses 0/1 in the action space to indicate whether to deploy SDP 
components. There are at most M non-zero values. The action space used to deploy SDP 
components at time t is shown as follows: 

 
𝐴𝐴𝑡𝑡 = (𝑍𝑍1,𝑍𝑍2, . . . ,𝑍𝑍𝑁𝑁)𝑇𝑇                                              (28) 

4.2.3 Reward 
The DDPG environment provides corresponding rewards according to the next network state 
formed by the action on the network, and guides the agent to constantly find a more optimal 
solution. Therefore, the reward should be designed based on (20) to achieve the optimization 
goal. However, 𝑛𝑛𝑖𝑖 ,∆𝜙𝜙,𝑅𝑅,𝑃𝑃𝑃𝑃 have different dimensions and orders of magnitude, which affects 
the results of data analysis. To solve this problem, we use the Z-score function to standardize 
the index value that needs to calculate the reward: 

 
𝑓𝑓(𝑥𝑥) = 𝑚𝑚−𝑚𝑚

𝜎𝜎
, 𝑥𝑥 ∈ 𝑋𝑋                                                (29) 

 
After performing the action, the agent will get the reward according to the next network 

status. 
 

𝑃𝑃𝑡𝑡 = 𝑓𝑓(𝑧𝑧)                                                           (30) 

4.2.4 State Transition 
The state transition is defined as (𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡 , 𝑃𝑃𝑡𝑡 ,𝑆𝑆𝑡𝑡+1), where 𝑆𝑆𝑡𝑡 is the current network status, 𝐴𝐴𝑡𝑡 is 
the action taken by the agent (the location and number of SDP components deployed), 𝑆𝑆𝑡𝑡+1 is 
the new network status after getting reward 𝑃𝑃𝑡𝑡 and perform action 𝐴𝐴𝑡𝑡. 

Then, we design the algorithm according to the state space, action space and reward defined 
above. The initial deployment algorithm of SDP component based on DDPG is described in 
Algorithm 1. The redeployment algorithm to ensure the delay and other constraints are met 
when some SDP components are compromised under cyber attacks is described in Algorithm 
2. In addition, we study the deployment of SDP components in the node varying situations, in 
which the deployment changes with the different cyber attacks. 
 

4.3 Introduction to Algorithm  
Next, according to the above optimization objectives and related parameters, we design the 
algorithm as follows. Our proposed model can be dynamically deployed for a given network 
topology and corresponding network state, as shown in Algorithm 1. 
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Algorithm 1: DDPG-based SDP components initial placement 
 Input:    Request traffic from initial hosts RT, network topology G, 
weight factors 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3 
     Output:  Number of SDP components M, locations of SDP components L 
1   Initialize the DDPG environment env with G, RT, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3; 
2   for episode=0; episode<maxEpisode do 
3   Divide network into NA areas by the LPA algorithm; 
4   Randomly selecting one node in each areas as the initial placement locations IPL; 
5   Initialize the initial network state 𝑆𝑆0 according to the env and IPL; 
6   for i=0; i<maxIteration do 
7   Get the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝 according to 𝑆𝑆𝑖𝑖 by DDPG; 
8   Add exploration noise 𝑁𝑁𝑡𝑡 on the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝, then get the next action 𝐴𝐴𝑖𝑖; 
9   Get the next state 𝑆𝑆𝑖𝑖+1 and reward 𝑅𝑅𝑛𝑛𝑖𝑖 according to 𝐴𝐴𝑖𝑖 by env;    
10 Train the model in DDPG according to 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1,𝐴𝐴𝑖𝑖  and 𝑅𝑅𝑛𝑛𝑖𝑖; 
11  𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+1; 
12 Get the number of SDP components M and the locations of SDP components L 
according to the action with the maximum reward. 

 
When an attacked SDP component fails in the network, the redeployment algorithm is 

triggered, as shown in Algorithm 2. Firstly, the network state, such as network traffic, network 
topology, weight factor, etc., is input into the algorithm as parameters and the DDPG 
environment variables are initialized. Then, randomly select an ordinary node around the failed 
SDP node as the initial redeployment position, start iterative search for the most suitable 
deployment position, and output it. In addition, there may be cases where the original normal 
SDP node accepts new service request traffic, and it is defined as a redirection node. Similar 
to Algorithm 1, in line 7, we introduce random variables 𝑁𝑁𝑡𝑡 as exploration noise. 
 

Algorithm 2: DDPG-based SDP components replacement when compromised 
     Input: Number of compromised SDP components CN, locations of compromised 
SDP components CL, network traffic flow F, network topology G, weight factors 
𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3 
     Output: Locations of the new placed SDP components NL 
1    Initialize the DDPG environment env with F, G, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3; 
2    for episode=0; episode<maxEpisode do 
3    Randomly selecting one node near each compromised SDP component as the initial  
      replacement location IRL; 
4    Initialize the initial network state  according to the env and IRL; 
5    for i=0; i<maxIteration do      
6    Get the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝 according to 𝑆𝑆𝑖𝑖 by DDPG;    
7    Add exploration noise 𝑁𝑁𝑡𝑡 on the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝, then get the next action 
𝐴𝐴𝑖𝑖; 
8    Get the next state 𝑆𝑆𝑖𝑖+1 and reward 𝑅𝑅𝑛𝑛𝑖𝑖 according to 𝐴𝐴𝑖𝑖 by env; 
9    Train the model in DDPG according to 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1,𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑛𝑛𝑖𝑖; 
10  𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+1; 
11  Get the locations of the new placed SDP components NL according to the action 
with the maximum reward. 
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5. Evaluation 
This section aims to evaluate the proposed solution by comparing it with different method, 
thus demonstrating the feasibility of deploying events in the WAN environment. 

5.1 Platform 
In order to evaluate the performance of the proposed solution, we set up a multi-node test 

platform based on Mininet 2.3.0 and RYU 4.34. We deployed VMware ESXI 6.5 as the 
management framework of virtualization service. The experimental platform is run on Ubuntu 
22.04.3LTS operating system and has Intel Xeon(R) Gold 5118 CPU @ 2.30GHz with 48 
cores and 48 GB RAM. In addition, DDPG-SDPCR algorithm is implemented based on 
Python 3.7.17 language and TensorFlow 1.13 framework. 

5.2 Topology and Parameter  
The proposed model and above mentioned methods are implemented over the topologies 

from Internet Topology Zoo [39]. Internet Topology Zoo currently includes 261 topologies, 
and the parameters of them are from real world. We selected 2 representative topologies, which 
often appear in the literature on network problem, to evaluate the proposed model and compare 
it to the baseline. Then the proposed model was run over them. 

We use the real world network topologies to evaluate the proposed DDPG-SDPCR model 
and algorithms, that are the ATT North America network from the United States and the Geant 
network from Europe, which include 25 nodes and 57 edges, and 34 nodes and 52 nodes 
respectively. The distance and relative position between nodes are calculated by Haversine 
formula [40] according to the latitude and longitude coordinates provided by Internet 
Topology Zoo, and the shortest path between nodes is calculated by Dijkstra algorithm [38]. 
The propagation delay between nodes and transmission delay of wired network are calculated 
by (2) and (3). The parameters in the experiment are listed in Table 3 and Table 4. 

 
Table 3. Parameters of AAT North America. 
Name or description Value 
Number of normal switches 15 
Number of SDP components 10 

𝜇𝜇1 0.4 
𝜇𝜇2 0.3 
𝜇𝜇3 0.2 
𝜇𝜇4 0.1 

 
Table 4. Parameters of Geant. 

Name or description Value 
Number of normal switches 20 
Number of SDP components 14 

𝜇𝜇1 0.4 
𝜇𝜇2 0.3 
𝜇𝜇3 0.2 
𝜇𝜇4 0.1 

 
In order to analyze and explore the influence of SDP nodes damaged by malicious attacks 

on the flow delay of the whole SDP network, we tested the network delay in 4 network 
environments with different traffic sizes: 1Mbits, 2Mbits, 4Mbits and 8Mbits. In order to 
analyze and explore the difference of the impact of malicious attacks on the flow delay of the 
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whole network, we set the failure rate of SDP nodes to 0.1, and randomly selected two kinds 
of three SDP nodes to conduct experimental tests. The input parameters in DDPG-SDPCR are 
shown in Table 3 and Table 4, and the details of the two faults are shown in Table 5. We 
firstly determine the deployment position of SDP nodes in the input topology according to 
Algorithm 1. Then, due to cyber attacks, according to the failure probability, some SDP nodes 
fail. Corresponding topology changes are shown in Figs. 4-5 and Figs. 8-9. 
 

Table 5. The specific situation of network failure. 
Topology ATT North America Geant 
Compromised SDP Node 
Under Attack 1 4, 10, 22 2, 10, 12 

Compromised SDP Node 
Under Attack 2 7, 16, 25 3, 9, 11 

 

 
Fig. 4. Compromised SDP nodes under attack 1 

in ATT North America. 
Fig. 5. Compromised SDP nodes under attack 2 

in ATT North America. 

Fig. 6. The TD of ATT North America changes 
with different situations under attack 1.(Greedy) 

Fig. 7. The TD of ATT North America changes 
with different situations under attack 2.(Greedy) 
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Fig. 8. Compromised SDP nodes under attack 1 

in Geant. 
Fig. 9. Compromised SDP nodes under attack 2 

in Geant. 

Fig. 10. The TD of Geant changes with different 
situations under attack 1.(Greedy) 

Fig. 11. The TD of Geant changes with different 
situations under attack 2.(Greedy) 

 
According to the failure probability, we randomly select 2 different failure situations under 

attacks in the ATT North America network, as shown in Figs. 4-5. The yellow nodes are the 
normal nodes, the lime nodes are the SDP nodes, and the orangered nodes are the damaged 
SDP nodes. Node 4, 10 and 22 in Fig. 4, and Node 7, 16 and 25 in Fig. 5, which are affected 
by Attack 1 and Attack 2. Similarly, Figs. 8-9 show the situation when SDP nodes in Geant 
network are attacked and fail, in which the failed nodes affected by Attack 1 are 2, 10 and 12, 
and those affected by Attack 2 are 3, 9, 11. Then, according to the serial number of the failed 
nodes and the corresponding user requests relationships, we use greedy algorithm as baseline 
to shunt the load of the failed SDP nodes, and compare it with our proposed DDPG-SDPCR 
algorithm. 

As shown in Figs. 6-7, under two kinds of attacks, the average Transmission Delay (TD) of 
ATT North America network increased by 9.257ms (34.82%), 15.630ms (37.54%), 35.444ms 
(45.56%), and 48.824ms (40.81%), and 16.437ms (61.83%), 40.739ms (97.86%), 74.121ms 
(95.27%), and 77.293ms (64.61%) when the traffic size was 1Mbits, 2Mbits, 4Mbits, and 
8Mbits respectively. Similarly, as shown in Figs. 10-11, under two kinds of attacks, the 
average TD of Geant network increased by 29.922ms (131.70%), 36.776ms (101.97%), 
61.176ms (111.81%), and 114.670ms (140.96%), and 5.714ms (113.18%), 26.491ms 
(73.45%), 40.02ms (73.15%), and 56.31ms(69.23%), respectively. It can be found that in both 
topologies, even if the network load redirection strategy based on greedy algorithm is adopted, 
the network attack will still have a significant impact on the performance of SDP network after 
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the SDP node fails. In addition, due to the difference of node location and the size of traffic 
requested by the host, the SDP node failure caused by different attacks has significant 
differences in the increase of TD. To sum up, a more effective fault tolerance strategy is 
necessary. 

In order to evaluate the mitigation effect of our DDPG-SDPCR mechanism on the increase 
of network delay caused by SDP node failure and damaged in the above two networks, we 
conducted relevant tests. We tested each network for 12 times, including 2 kinds of attacks 
and 4 kinds of traffic size (1Mbits, 2Mbits, 4Mbits and 8Mbits), and discussed the normal 
situation (not attacked), redirection recovery based on greedy algorithm (as a comparison 
baseline) and redeployment recovery based on DDPG-SDPCR mechanism, as shown in Figs. 
12-23. 

 

 
Fig. 12. ATT North America redeployed by 

DDPG-SDPCR under attack 1. 
Fig. 13. ATT North America redeployed by 

DDPG-SDPCR under attack 2. 
 
Figs. 12-13 are the redeployment topology diagrams obtained by Algorithm 2 after SDP 

node failure caused by two kinds of attacks on ATT North America network. Among them, 
except normal nodes, SDP nodes and damaged nodes, limegreen nodes are redeployed SDP 
nodes and yellowgreen nodes are redirected SDP nodes. As shown in Fig. 12, in order to cope 
with SDP nodes failures caused by Attack 1, Algorithm 2 gives a redeployment node Node 5, 
and 3 redirection nodes Node 4, 22 and 24. As a normal SDP node, the latter bears a part of 
the requested traffic of the originating host because there are faulty SDP nodes around. In this 
way, the number of redeployment nodes can be reduced and the redeployment cost can be 
reduced. Similarly, Fig. 13 shows the redeployment in case of Attack 2. The redeployment 
node is Node 9, and the redirection nodes are Node 7, 12 and 16. 
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Fig. 14. The TD comparison of ATT North 

America among different situations under Attack 
1. 

Fig. 15. The TD comparison of ATT North 
America among different situations under Attack 

2. 

 
Fig. 16. The TD of ATT North America changes 
with different situations under Attack 1.(DDPG-

SDPCR) 

Fig. 17. The TD of ATT North America changes 
with different situations under Attack 1.(DDPG-

SDPCR) 
 
As shown in Fig. 14, under normal circumstances, TD of ATT North America network are 

26.582ms, 41.631ms, 77.799ms, and 119.631ms when the traffic size are 
1Mbits,2Mbits,4Mbits, and 8Mbits, respectively. In the case of Attack 1, after redirection by 
greedy algorithm, the corresponding TD are 35.839ms, 57.261ms, 113.243ms, and 168.455ms, 
respectively. After the redeployment of DDPG-SDPCR mechanism, the corresponding TD are 
31.698ms, 49.806ms, 99.202ms, and 147.320ms. Combined with the above data, after the 
redeployment of DDPG-SDPCR, compared with the normal situation, TD increased by 
5.116ms (19.24%), 8.175ms (19.64%), 21.404ms (27.51%), and 27.689ms (23.14%), 
respectively, and compared with greedy algorithm, decreased by 4.142ms (11.56%), 7.455ms 
(13.02%), 14.041ms (12.40%), 21.136ms (12.55%), respectively. As shown in Fig. 15, in the 
case of Attack 2, after redirection by greedy algorithm, TD under different traffic size are 
43.019ms, 82.37ms, 151.920ms, and 196.924ms, respectively. After the redeployment of 
DDPG-SDPCR mechanism, the corresponding TD are 34.281ms, 69.033ms, 123.259ms, and 
165.954ms, respectively. Combined with the above data, after the redeployment of DDPG-
SDPCR, compared with the normal situation, TD increased by 7.699ms (28.96%), 27.402ms 
(65.82%), 45.461ms (58.43%), and 46.323ms (38.72%), respectively, and compared with 
greedy algorithm, decreased by 8.738ms (20.31%), 13.337ms (16.19%), 28.660ms (18.87%), 
and 30.971ms (15.73%), respectively. With the increase of traffic, the TD of the network will 
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increase. It can be found that compared with greedy algorithm, our proposed DDPG-SDPCR 
mechanism can alleviate the TD increase caused by attacks to a great extent, and significantly 
reduce the delay increase caused by greedy algorithm. Figs. 16-17 are line charts of TD 
changing with time under different traffic sizes in ATT North America network under Attack 
1 and Attack 2, respectively. It can be found that the cyber attack occurred at 50s, then the 
greedy algorithm started to run, and TD increase greatly. At about 75s, DDPG-SDPCR 
mechanism started to run, and TD dropped significantly. Through the above two line charts, 
the advantages of DDPG-SDPCR compared with greedy algorithm can be intuitively 
displayed. In addition, two different attacks have different effects, and Attack 2 makes the TD 
of the network increase more. 

 

 
Fig. 18. Geant redeployed by DDPG-SDPCR 

under Attack 1. 
Fig. 19. Geant redeployed by DDPG-SDPCR 

under Attack 2. 
 
 Figs. 18-19 show the redeployment topology diagram of Geant network after SDP node 

failure caused by two kinds of attacks, which is calculated by algorithm 2. As shown in Fig. 
18, in order to deal with some SDP node failures caused by Attack, algorithm 2 gives 
redeployment node Node 23 and redirection nodes Node 3, 8, and 11. Similarly, Fig. 19 shows 
the redeployment in the case of Attack 2. The redeployment node is Node 27, and the 
redirection nodes are Node 2, 7, 8, and 16. 

 
Fig. 20. The TD comparison of Geant among 

different situations under Attack 1. 
Fig. 21. The TD comparison of Geant among 

different situations under Attack 2. 
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Fig. 22. The TD of Geant changes with different 

situations under Attack 1.(DDPG-SDPCR) 
Fig. 23. The TD of Geant changes with different 

situations under Attack 2.(DDPG-SDPCR) 
 
As shown in Fig. 20, under normal circumstances, the TD of Geant network are 22.720ms, 

36.065ms, 54.712ms, and 81.347ms when the traffic size are 1Mbits,2Mbits,4Mbits,and 
8Mbits, respectively. In the case of Attack 1, after redirection by greedy algorithm, the 
corresponding TD are 52.641ms, 72.841ms, 115.888ms, and 196.017ms, respectively. After 
the redeployment of DDPG-SDPCR mechanism, the corresponding TD are 34.989ms, 
55.455ms, 89.137ms, and 154.853ms, respectively. Combined with the above data, after the 
redeployment, TD increased by 12.269ms (54.00%), 19.390ms (53.76%), 34.425ms (62.92%), 
and 73.506ms (90.36%), respectively, compared with the normal situation, and the 
corresponding TD decreased by 17.652ms (33.53%), 17.386ms (23.87%), 26.751ms (23.08%), 
and 41.164ms (21.00%), respectively, compared with the greedy algorithm. As shown in Fig. 
21, in the case of Attack 2, after redirection by greedy algorithm, the corresponding TD under 
different traffic size are 48.433ms, 62.557ms, 94.736ms, and 137.660ms, respectively. After 
the redeployment of DDPG-SDPCR mechanism, the corresponding TD are 30.794ms, 
46.481ms, 71.890ms, and 104.647ms, respectively. Combined with the above data, after the 
redeployment, TD increased by 8.074ms (35.54%), 10.416ms (28.88%), 17.178ms (31.40%), 
and 23.299ms (28.64%), respectively, compared with the normal situation, and the 
corresponding TD decreased by 17.640ms (36.42%), 16.076ms (25.70%), 22.846ms 
(24.115%), and 33.014ms (23.98%), respectively, compared with the greedy algorithm. With 
the increase of traffic, the TD of the network will increase. It can be found that compared with 
the greedy algorithm, our proposed DDPG-SDPCR mechanism can greatly alleviate the TD 
increase caused by the attack and significantly reduce the delay increase caused by the greedy 
algorithm. Figs. 22-23 are line charts of TD changing with time under different traffic sizes in 
Geant network under Attack 1 and Attack 2, respectively. It can be found that the cyber attack 
occurred at 50s, then the greedy algorithm started to run, and TD increase greatly. At about 
75s, DDPG-SDPCR mechanism started to run, and TD dropped significantly. Through the 
above two line charts, the advantages of DDPG-SDPCR compared with greedy algorithm can 
be intuitively displayed. In addition, two different attacks have different effects, and Attack 1 
makes the TD of the network increase more. 

6. Conclusion 
In this study, a wide area SDP framework and corresponding attack tolerance mechanism 

are proposed, which can provide users with wide area remote intranet resource security access 
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services. In addition, considering the potential cyber attacks, the SDP components can be 
redeployed after some SDP components fail due to malicious attacks, and the delay and 
bandwidth requirements of users can be met. Based on DDPG-SDPCR redeployment 
mechanism, considering the constraints of network traffic, link bandwidth and delay, the 
appreciate nodes in the network are selected as the deployment locations of the newly added 
SDP components. In addition, this study also carries out experimental tests and results analysis 
for different network topologies, different attack scenarios and different traffic sizes, and 
compares them with the baseline. The results show that our proposed framework based on 
DDPG can effectively reduce the impact of malicious attacks on the SDP wide area network, 
and it is superior to the baseline in terms of delay, link load and attack tolerance. 
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