
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, Sep. 2024 2739
Copyright ⓒ 2024 KSII

This research was supported by a research grant from the Science and Technology Innovation leading Talents
Subsidy Project of Central Plains [Grant No. 244200510038]. We express our thanks to Prof. Hu who checked our
manuscript.

http://doi.org/10.3837/tiis.2024.09.014 ISSN : 1976-7277

DDPG-SDPCR: A DDPG-based Software
Defined Perimeter Components

Redeployment

Zheng Zhang1, Quan Ren2, Jie Lu2, Yuxiang Hu2* and Hongchang Chen2
1 Institute of Information Technology, PLA Strategic Support Force Information Engineering University,

Zhengzhou 450000 China
[e-mail: 975644214@qq.com]

2 Institute of Information Technology, PLA Strategic Support Force Information Engineering University
Jianxue Street 7, Zhengzhou, Henan, China

[e-mail: huyuxiangchn@163.com]
*Corresponding author: Yuxiang Hu

Received March 11, 2024; revised July 29, 2024; accepted August 19, 2024;

published September 30, 2024

Abstract

In wide area SDP networks, the failure of SDP components caused by malicious attacks will
be accompanied by different deployment locations, profoundly affecting network service
latency. However, traditional deployment methods based on prior knowledge are no longer
applicable to dynamic SDP networks. This article proposes a dynamic and dimensionally
variable deployment mechanism DDPG-SDPCR for SDP components based on DDPG, which
enhances the network's endogenous security capability and improves attack tolerance. Based
on this, we constructed corresponding mathematical models for latency, load balancing, and
attack tolerance. The DDPG-SDPCR mechanism dynamically deploys new SDP nodes to
replace faulty nodes based on the real-time status of the network, thereby achieving
imperceptible attack tolerance for users. We have implemented a wide area SDP prototype
with endogenous security capabilities and evaluated it under different network topologies,
traffic sizes, and network attacks. The evaluation results indicate that under high traffic
conditions, our proposed redeployment mechanism outperforms the baseline by 36.42% in
latency, and only increases by 19.24% compared to the non attacked situation.

Keywords: SDP, DDPG, Attack tolerance, Endogenous security

2740 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

 1. Introduction

Software Defined Perimeter (SDP) [1] is a zero trust architecture [2], which provides
enterprises with dynamic and flexible network security logical perimeter to isolate resources
such as applications and services on insecure networks with unknown security threats. SDP is
first defined by the CSA in 2014 as an abstraction of network perimeter from physical
implementation to logical definition. The emergence of this model is in response to the surge
in network devices and the increasing mobility of devices, leading to the gradual melting of
traditional network boundaries. The SDP architecture provides a new type of security model
that provides better protection by verifying the identity of resource visitors to prevent threats
both inside and outside the boundary. By hiding resources from unauthorized network entities,
SDP can effectively eliminate some malicious attacks, including violent attacks, network
traffic attacks, and other attacks on [3-4]. The SDP architecture typically includes SDP
components such as an SDP controller, SDP gateway, initiator host, and receiver host in
hardware. The software includes single packet authentication algorithms, encryption
algorithms, etc. In SDP networks, the principle of minimum privilege is implemented to
encrypt network traffic so that all resources can be safely accessed without crossing boundaries,
regardless of the user's location. Through an isolated, on-demand, and dynamically configured
trusted logic layer, the SDP architecture can provide secure isolation and protection for internal
network resources against malicious behavior by non authenticated users.

However, in the face of malicious attacks targeting SDP components themselves, such as
malicious tampering, vulnerability backdoor attacks, etc., once the malicious attacks lead to
failure, a centralized SDP architecture will not be able to meet the normal security function
services. Although the distributed SDP architecture [5] can avoid lightweight cyber attacks to
a certain extent, it will still reduce its processing performance and increase the communication
delay. With the increase of malicious attacks, the processing performance of SDP will further
decline, and the security protection function provided by SDP will eventually fail. Therefore,
how to improve the attack tolerance of SDP architecture and avoid single point of failure on
the premise of ensuring the service function and communication delay has become the key of
research.

The SDP component which is logically centralized but physically distributed is a feasible
solution. In SDP multi-component network architecture, the number and location of SDP
components have a great impact on network performance, and its placement has become a
challenge in the current research. Placement issues are not specific to the SDP architecture
alone. This problem is also raised in SDN and Network Function Virtualization (NFV), that
is, to find the most suitable deployment location of distributed SDN controller and resources
of Virtualized Network Function (VNF) [6, 7]. In addition, to find the most suitable node in
Named Data Networking (NDN) [8] architecture to play the role of NDN controller [9]. These
problems have some common points, but also have their unique places. In principle, the
deployment optimization of SDP components in Wide Area Network (WAN) means obtaining
the number and placement location of SDP components, with the goal of optimizing such as
minimizing delay [10, 11, 12], balancing load [13, 14, 15], and reducing energy consumption
[16, 17]. In the previous methods, greedy or heuristic methods are used, and load balancing is
achieved through one of the above three goals. However, existing traditional methods have
not taken into account the special problems faced by SDP component deployment. The
ultimate goal of deployment is to enable users to tolerate attacks without perception, rather
than simply optimizing latency or energy consumption. With the development of deep
reinforcement learning, algorithms based on Deep-Q-Network (DQN) have reduced the action

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2741

dimension of agent output, enabling DQN to better solve problems that require multi-
dimensional action output. However, when there is excessive load in the wide area SDP
network or some SDP components suffer from network attack failures, it is necessary to
temporarily add network equipment to ensure the normal service of users. In this case, the
number of SDP components or switches may change. However, algorithms based on DQN
limit the number of network nodes to a fixed value; Therefore, it cannot adapt to the dynamic
changes in the number of network devices in malicious attack scenarios.

In order to meet the requirements of processing speed and multiple optimization objectives
for SDP component deployment, this paper proposes a dynamic and dimensionally variable
optimization model based on Deep Deterministic Policy Gradient (DDPG-SDPCR). The
model considers both minimum latency and attack tolerance, and balances traffic load. Deep
Reinforcement Learning (DRL) allows network entities to learn and establish knowledge
about network states, and to solve problems with large state and action spaces [18], achieving
autonomous and efficient decision-making capabilities. Here, we proposed a wide area SDP
architecture that has the ability to redeploy SDP components while considering potential
network attack threats. We considered the data flow delay, link bandwidth and load in the
network, as well as tolerance requirements, and designed a mechanism to consider the
incremental deployment of SDP components in the scenario of SDP component failure after
being attacked during user traffic forwarding. Unlike the node deployment scheme based on
DQN, our proposed DDPG algorithm solves the constructed model and uses bit masks to
adjust the effective dimensionality of actions in the DDPG algorithm, allowing the algorithm
to operate when the number of deployed SDP components is variable. Specifically, DDPG-
SDPCR allows the dimensions of deployment nodes to be dynamically adjusted based on the
decisions of network administrators, which means that the goal is to increase attack tolerance
and reduce deployment costs as much as possible based on user insensitivity or reduced
deployment increments. In addition, based on reinforcement learning algorithms, DDPG-
SDPCR does not require a large number of training samples and can obtain new data through
exploration of the environment, and use the new data to repeatedly update and iterate the
existing model. In the algorithm proposed in this article, random noise variables are also added
to increase the exploration range to prevent getting stuck in local optima.

The primary contributions of this study are summarized below.
(1) We propose a wide area SDP framework with endogenous security capabilities, which

can provide users with secure access to remote intranet resources over a wide area. In addition,
considering potential network attacks, it enables to redeploy SDP components and meet user
latency and bandwidth requirements after some SDP components fail due to malicious attacks.

(2) We propose a dynamic and dimensionally variable SDP component redeployment
mechanism DDPG-SDPCR, which can detect and remove failed SDP components after some
SDP components fail due to malicious attacks based on consistency verification. Then, based
on the redeployment algorithm, considering constraints such as network traffic, link bandwidth,
and latency, suitable nodes in the network are selected as deployment locations for the new
SDP components.The source code of DDPG-SDPCR implementation and the related
algorithms will been released at Github.

(3) We propose a wide area SDP prototype with endogenous security capabilities.
Simulation results show that the redeployment of components in the wide area SDP
architecture based on DDPG and bit mask algorithms outperforms the baseline by at least
11.56% in terms of latency, link load, and attack tolerance.

The rest of this article is organized as follows: related work can be found in Section 2. The
problem statement and mathematical modeling will be explained in the Section 3. In Section

2742 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

4, we provided a detailed explanation of the proposed algorithm and corresponding parameters.
The evaluation results of the model are presented in Section 5. Finally, Section 6 concludes
this study.

2. Related Works
This section provides an overview of the relevant work. Firstly, relevant work on potential
mathematical problems is provided, followed by an introduction to the application of DRL in
network edge or cloud placement problems. Finally, explanation is given on the universality
and specificity of SDP component deployment problem.

Heller et al. [19] first proposed the control plane deployment problem by analyzing the
impact of controller placement on the average delay and maximum delay of the network. Since
then, people have done a lot of work on it. In real life, the center of logistics network chooses
the best location when the factory, warehouse or other equipment in a given network topology.
Therefore, this problem is also known as the location problem of factories, facilities or
warehouses. Generally, people use mixed integer linear programming, such as the software
based on IBM decision optimization modeling for python [20] to model and solve it. If the
optimization objective is the average value (delay or hops and other optimization objectives),
the problem is classified as a k-means problem [21]. If the optimization goal is the maximum
value, the problem is classified as a k-center problem [22]. The difference between the two is
that the selected nodes are the average or random values in the cluster. Generally, the latter
has a larger amount of calculation, while the former has the problem that the output result may
not be in the set. Heller's work [19] provides a further discussion on this general problem. In
[23] and [24], different aspects and different methods of facility location issues are also
outlined, focusing on "uncertainty", such as uncertain flow demand or delay. In addition, there
are deployment schemes based on density clustering [25] and heuristic algorithms for linear
programming [26, 27, 28]. However, due to various constraints and heterogeneous variables
in controller deployment, the optimization problem is NP hard. Moreover, these works focus
on general and universal theoretical issues, which do not address the specific issues of device
deployment in wide area networks, which involve multiple parameters.

The application of DRL in the field of networks provides effective tools and new solutions
for responding to dynamic changes in networks, optimizing the deployment of network
devices and services. Intelligent agents can iteratively interact with random environments to
find the optimal solution. Reza et al. [29] proposed a controller placement and allocation
strategy based on reinforcement learning method, which includes a wide range of constraints,
including elasticity, delay, load balancing and controller capacity. The author explained that
they first proposed a machine learning method to solve the placement and allocation problem
of multi-constraint elastic controllers. However, due to the traditional reinforcement learning
(RL) method, the strategy has the problems of long learning time and slow convergence speed,
which is difficult to be applied to large networks or delay sensitive networks. Alejandro et al.
[30] proposed a VNF deployment mechanism based on DQN across single board computers
(SBC) clusters. This mechanism selects the most appropriate node in multiple clusters, and
deploys VNF according to the node's resource and event requirements to optimize the energy
consumption in SBC. This research mainly considers resource cost and energy consumption,
and does not optimize network indicators such as delay and load balancing. Li et al. [31]
proposed an algorithm based on multi-agent DQN (MADQN) to realize the dynamic
placement of controllers. The algorithm allows the control plane to change dynamically with
the change of flow. In addition, the algorithm based on MADQN reduces the action dimension

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2743

of agent output, so that DQN can better solve the problem of multi-dimensional action output.
However, the MADQN based algorithm uses DRL to deploy dynamic controllers. When the
network load in a hot area is too large or some network equipment is disabled by network
attack, network facilities (such as network access points) must be temporarily added to provide
sufficient network service capacity. In this case, the number of network devices, such as
switches, will change. However, the MADQN based algorithm limits the number of switches
to a fixed value. Therefore, it cannot adapt to the application scenario of dynamic changes in
the number of network devices. Yu et al. [32] proposed an edge computing and caching
solution based on DDPG. The solution considers the diversity of services requested by users
and the dynamic communication conditions between Multi-access Edge Computing (MEC)
server and users, so as to jointly optimize task scheduling and resource allocation in continuous
action space. The simulation results show that the DRL inspired resource allocation scheme is
obviously superior to other comparison strategies, and achieves the optimal resource allocation
scheme. Unfortunately, although the above literature considers a variety of network
parameters and constraints, it does not study and design the faults caused by cyber attacks.

Table 1. Comparison of existing methods.
 Delay

optimization

Load
balancing
optimization

Energy
consumption

optimization

Attack
tolerance Comment

Clustering [21,22,25] √ × × × Single optimization
objective

Heuristic [26,27,28] √ × √ × Large calculation and time
consumption

DQN [29,30,31] √ √ × √ Fixed vector dimension

For the deployment of network equipment or service functions in SDN, the above research
considers network parameters or user requirements such as delay and load, so that the control
plane can meet various constraints and achieve load balance between different controllers.
Some of the methods proposed in the research even take into account the dynamic changes of
the network, so that its deployment scheme can be dynamically adjusted according to the
changes of the network state. However, the above research on equipment or service placement
for SDN and SDP component deployment has a relationship of universality and particularity.
The particularity of SDP component deployment is to consider the function failure caused by
malicious attacks and minimize the impact. The above research does not consider the impact
of network attack, hence its deployment scheme cannot adapt to the real environment faced by
SDP wide area network.

3. Problem Statement and Mathematical Modeling
As mentioned earlier, the way to solve the SDP component deployment problem is to obtain
the number and location of SDP components to be deployed, so that they have the lowest cost
and delay, as well as a certain degree of attack tolerance. In this section, we first introduce the
wide area SDP architecture. Then, we introduce the delay, load balancing and tolerance model
of SDP component deployment.

2744 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

Fig. 1. The structure of wide area SDP network.

3.1 Wide Area SDP architecture

Fig. 1 shows the wide area SDP network structure. Based on SDN structure, the structure is
divided into three layers: data plane, control plane and application plane. The data plane
includes mobile devices, edge servers, cloud computing centers, switches and other network
devices. User equipment can access the edge SDP gateway through the access point to obtain
SDP controller authentication, and then obtain computing or data storage services. The edge
server and cloud center use wired network connection. The network services of devices in the
data plane are managed through the control plane. The application layer provides resource
management, uninstall services and other services.

Fig. 2. Solution 1 under attack. Fig. 3. Solution 2 under attack.

Controller
Plane

IH 1 IH 2 IH 3

Intranet ResourcesExternal Network

App1
Application

Plane App2 App3

SDP Controller

Data
Plane

SDN Switch

AH 1

AH 3

AH 2

SDP
Gateway

Public Network

mTLS

m
TL

S

SDN Controller

Internal Network

m
TL

S

Internal NetworkInternal Network

Internal Network

IH

1

2

3

4

SDP Component 1

SDP Component 2

Internal Network

IH

1

2

3

Internal Network

SDP Component 1

SDP Component 3

SDP Component 2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2745

Fig. 2 and Fig. 3 show two solutions when SDP components are attacked and fail. Red is
the failed SDP component, dark blue is the normal SDP component, and sky blue is the newly
deployed SDP component. Fig. 2 shows the redirection strategy based on greedy algorithm,
that is, when SDP component 1 is attacked and fails, the communication path from the
initiating host to the intranet resources is redirected from ① → ② to ① → ② → ③ → ④. In
this way, the communication path bypasses the attacked SDP component at the cost of
increasing the delay and the load of SDP component 2. Fig. 3 shows the redeployment strategy
based on the DDPG-SDPCR algorithm proposed in this study, that is, when SDP component
1 is attacked and fails, the new SDP component 3 is redeployed by analyzing the current
network state. The communication path from the initiating host to the intranet resources is
changed from ① → ② to ① → ② → ③. In this way, the destination SDP node is replaced
while reducing the additional delay as much as possible.

3.2 Mathematical Model
In this study, we use a directed acyclic graph with variable nodes to represent the network
topology. Here, the maximum number of nodes is n. Each node is a switch, and SDP
components can be deployed on any node. Graph G = (Q; E)shows the network topology,
where q is the set of switches Q = {q1, q2, . . . , qN}, and E is the set of edges between nodes.
The number of SDP components in the network is m, and the SDP component set is marked
as G = {g1, g2, . . . , gM}. In addition, we set a binary variable 𝑋𝑋𝑖𝑖,𝑗𝑗 to represent the connection
between node 𝑖𝑖 and node 𝑗𝑗.

 𝑋𝑋𝑖𝑖,𝑗𝑗 = �
0,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗;
1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗. (1)

3.2.1 Delay Model
SDP architecture provides secure and stable identity authentication and connection
establishment services for all kinds of users, in which there are many low latency applications.
Therefore, SDP must process network requests under certain delay constraints. SDP covers a
wide area. In addition, some nodes are far away and the network load distribution is uneven.
These characteristics lead to different data forwarding times of switches and different
processing times of SDP components for network requests. Therefore, the component
deployment in SDP architecture must consider propagation delay and transmission delay.

1. Propagation delay

As mentioned above, in the wide area SDP network, some nodes are far away from each
other, causing a large propagation delay in these nodes. Therefore, the centralized SDP
component cannot handle the network requests from these devices in time. The propagation
delay between nodes and the distance between nodes are related to the signal transmission
speed of the link between nodes. Therefore, the propagation delay between node 𝑖𝑖 and node 𝑗𝑗
is expressed as follows:

 𝑡𝑡𝑖𝑖,𝑗𝑗
𝑝𝑝 = 𝑋𝑋𝑖𝑖,𝑗𝑗∙𝑑𝑑𝑖𝑖,𝑗𝑗

𝑣𝑣𝑖𝑖,𝑗𝑗
 (2)

 𝑑𝑑𝑖𝑖,𝑗𝑗 is the distance between node 𝑖𝑖 and node 𝑗𝑗, and 𝑣𝑣𝑖𝑖,𝑗𝑗 is the propagation speed between node
𝑖𝑖 and node 𝑗𝑗.

2746 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

2. Transmission delay
In the wide area SDP network, wired connections are used between switches and SDP

gateways, between switches and switches, and between SDP controllers and SDP gateways.
In the wired network, due to the stability of the network environment, the interference between
different devices can be ignored. Therefore, the transmission delay between node 𝑖𝑖 and node 𝑗𝑗
is defined as follows:

𝑡𝑡𝑖𝑖,𝑗𝑗𝑡𝑡 = 𝑋𝑋𝑖𝑖,𝑗𝑗∙𝑉𝑉𝑖𝑖,𝑗𝑗
𝐵𝐵𝑖𝑖,𝑗𝑗

 (3)

 𝑉𝑉𝑖𝑖,𝑗𝑗 is the amount of data between node 𝑖𝑖 and node 𝑗𝑗, and 𝐵𝐵𝑖𝑖,𝑗𝑗 is the link bandwidth between
node 𝑖𝑖 and node 𝑗𝑗. Therefore, the complete link delay from node 𝑖𝑖 to node 𝑗𝑗 is defined as:

𝑡𝑡𝑖𝑖,𝑗𝑗 = 𝑡𝑡𝑖𝑖,𝑗𝑗

𝑝𝑝 + 𝑡𝑡𝑖𝑖,𝑗𝑗𝑡𝑡 (4)

For SDP component node 𝑖𝑖, we define its node delay 𝑡𝑡𝑖𝑖 as the sum of the delays experienced
by the network request flow with it as the access point, namely:

𝑡𝑡𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖,𝑗𝑗

𝐽𝐽
𝑗𝑗=1 (5)

where, 𝐽𝐽 is the number of network request flows with node 𝑖𝑖 as the access end.
We take the maximum delay of all SDP component nodes as 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚,

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = max

1≤𝑖𝑖≤𝑀𝑀
{𝑡𝑡𝑖𝑖} (6)

3.2.2 Link Bandwidth Utilization Limitation and Load Balancing Model
In SDN network, bandwidth is a limited system resource on which control flow and data flow
are transmitted. Therefore, only a limited amount of traffic can be transmitted in each link. In
addition, when the link is overloaded, the network performance will decline sharply, and the
packet loss rate of data transmission will also increase sharply. In addition, the effective
throughput of the network decreases, and the total delay caused by data retransmission will
also increase. In extreme cases, link congestion will result in local deadlocks that cannot be
used. Therefore, in order to make full use of bandwidth resources and ensure that the link is
not overloaded, the bandwidth utilization of the link must be controlled within a reasonable
range.

The bandwidth utilization of link k between two directly connected nodes can be defined as
follows:

𝜂𝜂𝑘𝑘 = 𝑓𝑓𝑘𝑘

𝐵𝐵𝑘𝑘
 (7)

where, 𝑓𝑓𝑘𝑘 is the traffic size of link k and 𝐵𝐵𝑘𝑘 is the bandwidth of link k.
Due to the difference of path planning and initial access point location, the traffic size on

each link will be different. Here, we use the standard deviation of traffic to measure the load
difference between SDP components. The load size of all links of an SDP component, the
average value and standard deviation of the load of all SDP components are defined as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2747

𝜙𝜙𝑗𝑗 =
∑ 𝑓𝑓𝑘𝑘
𝐾𝐾𝑗𝑗
𝑘𝑘=1
𝐾𝐾𝑗𝑗

 (8)

𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ 𝜙𝜙𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑀𝑀
 (9)

𝛥𝛥𝜙𝜙 = �∑ �𝜙𝜙𝑗𝑗−𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎�
2𝑀𝑀

𝑗𝑗=1

𝑀𝑀
 (10)

where, 𝐾𝐾𝑗𝑗 is the total number of requests received by SDP components 𝑔𝑔𝑗𝑗. The smaller the
standard deviation 𝛥𝛥𝛥𝛥, the more balanced the load of SDP gateway in the network.

3.2.3 SDP Component Attack Tolerance Model
In order to ensure the continuous and stable operation of SDP architecture, it is necessary to
maintain sufficient attack tolerance on the network link between SDP components and
protected network resources. SDP components have high attack tolerance and can
continuously maintain links with internal network resources and external access users in case
of malicious attacks. In the SDP architecture with SDN enabled, the control flow and data flow
use the same link to transmit data. Therefore, the attack tolerance of SDP components is related
to (i) the recovery time of cleaning and restarting after SDP components are attacked and failed,
that is, the node tolerance; and (ii) the tolerance of SDP component deployed node of all links.

1. Node tolerance and deployment cost

Based on the types of SDP components, the recovery time of cleaning and restarting is
different. In addition to human factors, we generally believe that the more expensive SDP
components are, the shorter the recovery time is. Table 2 lists the relationship between the
price Pr and recovery time Tr of the five SDP components assumed in this study.

Table 2. The relationship between price and recovery time.
Type Price Time of Recovery
1 1200 150
2 2000 120
3 2500 80
4 6500 40
5 12000 25

We define the node tolerance 𝑅𝑅𝑖𝑖𝑛𝑛 of node i as a function of recovery time Tr,

𝑅𝑅𝑖𝑖𝑛𝑛 = 𝑒𝑒𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑖𝑖 (11)

In addition, we need to define and calculate the cost of deploying SDP components.

𝑃𝑃𝑃𝑃 = ∑ 𝑃𝑃𝑃𝑃𝑖𝑖M

𝑖𝑖=1 (12)

2. Edge tolerance
In this study, SDP components are connected by wired network. In a wired network, the

links between nodes may not be connected due to communication link failure. In addition,

2748 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

SDN control information and data information are transmitted using the same network.
Therefore, the higher the link load, the greater the possibility of control information delay
arrival. The physical failure probability of the link is expressed in 𝑃𝑃𝑘𝑘𝑙𝑙 , and the link tolerance
𝑅𝑅𝑘𝑘𝑙𝑙 in the path is defined as follows:

𝑅𝑅𝑘𝑘𝑙𝑙 = �1 − 𝑃𝑃𝑘𝑘𝑙𝑙� ∙ 𝑇𝑇𝑇𝑇𝑇𝑇ℎ �

1
𝜂𝜂𝑘𝑘
� (13)

𝑇𝑇𝑇𝑇𝑇𝑇ℎ(𝑥𝑥) = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
 (14)

where, 𝜂𝜂𝑘𝑘 is the bandwidth utilization of the k-th link. The greater the network traffic, the
lower the link tolerance. Since both network traffic 𝑓𝑓𝑘𝑘 and link bandwidth 𝐵𝐵𝑘𝑘 are real numbers
that are not less than zero, that is, 𝜂𝜂𝑘𝑘 positive real numbers, the range of activation function
𝑇𝑇𝑇𝑇𝑇𝑇ℎ is between 0 and 1, which decreases as the independent variable increases and decreases.
Therefore, we use this function to express the relationship between link tolerance and network
traffic.

There can be multiple paths from the external network access node to the internal network
access node. We assume that there are m paths between nodes 𝑖𝑖 and 𝑗𝑗, one of the paths r has
𝑛𝑛𝑟𝑟 sub links, and express the tolerance of the sub link k on this path as 𝑅𝑅𝑘𝑘𝑙𝑙 . Thus, the path
tolerance between node 𝑖𝑖 and node 𝑗𝑗 is defined as the product of the link tolerance of each hop,
and the average link tolerance is defined as the average value of the link tolerance of all paths.
For an SDP component node 𝑖𝑖, its edge tolerance is defined as the average tolerance of all
paths that can be selected by the network flow with 𝑖𝑖 as the external network or internal
network access node.

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑙𝑙,𝑟𝑟 = ∏ 𝑅𝑅𝑘𝑘𝑙𝑙

𝑛𝑛𝑟𝑟
𝑘𝑘=1 (15)

𝑅𝑅𝑖𝑖,𝑗𝑗𝑙𝑙 =
∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑙𝑙,𝑟𝑟𝑚𝑚
𝑟𝑟=1

𝑚𝑚
 (16)

𝑅𝑅𝑖𝑖𝑙𝑙 =
∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑙𝑙𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 (17)

Where m is the number of paths between access point 𝑖𝑖 and access point 𝑗𝑗, and 𝐽𝐽 is the

number of other ends of all network flows with SDP component 𝑖𝑖 as the access end.
To sum up, the attack tolerance of SDP components should be combined with the tolerance

of its nodes and the tolerance of connected links, which is defined as follows:

𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑛𝑛 + 𝑅𝑅𝑖𝑖𝑙𝑙 (18)

The average attack tolerance of all SDP components in the network is defined as:

𝑅𝑅 =
∑ 𝑅𝑅𝑖𝑖𝑖𝑖∈𝑉𝑉𝑔𝑔

�𝑉𝑉𝑔𝑔�
 (19)

3.3 Model Establishment
In the network, the occurrence of malicious attacks and the size of data flow load vary with
the region and time. In the area where the SDP component fails or the data flow load is too

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2749

high due to the attacked network, the user authentication or legal access delay increases with
the increase of data transmission delay. Therefore, when deploying SDP components, we must
pay attention to the maximum average delay from SDP components in different regions to user
network equipment. Specifically, when deploying SDP components, we must optimize the
delay, link load, tolerance and deployment cost. To sum up, the optimization problem of
deploying SDP components is shown as follows:

𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧 = 𝜇𝜇1𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜇𝜇2𝛥𝛥𝛥𝛥 − 𝜇𝜇3𝑅𝑅 + 𝜇𝜇4𝑃𝑃𝑃𝑃 (20)

 𝑠𝑠. 𝑡𝑡. : 𝐶𝐶1: 𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3 + 𝜇𝜇4 = 1 (21)

 𝐶𝐶2: 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (22)

 𝐶𝐶3: 𝛥𝛥𝛥𝛥 ≤ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 (23)

 𝐶𝐶4: 𝑖𝑖 ∈ 𝑉𝑉𝑔𝑔,𝑅𝑅𝑖𝑖 ≥ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 (24)

 𝐶𝐶5: ∀𝑖𝑖 ∈ [1,𝑀𝑀],𝑃𝑃𝑃𝑃𝑖𝑖 ≤ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (25)

(21) indicates that the sum of the weights is equal to 1. Here, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3and 𝜇𝜇4 represent the

impact of delay, load difference, attack tolerance and deployment cost on optimization
objectives respectively. (22) indicates that the maximum delay from the user equipment, that
is, the initiating host, to the SDP component cannot exceed 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. In addition, (23) indicates
that the load difference between SDP components (expressed in the form of standard deviation
of bandwidth utilization) cannot exceed 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚. (24) indicates that the attack tolerance of each
SDP component cannot be less than 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖 represents the maximum delay of all SDP
components from the external network access point to the SDP component of the internal
network resource to be accessed, and R represents the average attack tolerance of all SDP
components.

4. Algorithm and Parameter
In this study, we focus on the dynamic deployment of SDP components after the SDP
components fail due to malicious attacks. Therefore, we must first traverse the candidate nodes,
measure their delay, load balance, attack tolerance and other indicators, and then dynamically
deploy the required number of SDP components according to the network status.

4.1 Introduction to DDPG

SDP component deployment is a Multiple Objective Combinatorial Optimization problem
(MOCO) [33] and NP hard problem. Heuristic algorithm can be used to solve MOCO problem.
However, these algorithms are easy to fall into local optimization. In addition, as the network
state is constantly changing with the network load and malicious attacks, SDP components
must be deployed according to the dynamic changes in the network. Therefore, it is very
difficult to solve dynamic SDP component deployment using heuristic algorithm.

In contrast, reinforcement learning is more suitable for solving MOCO problems. DDPG
algorithm [34] is a DRL algorithm that can output multidimensional actions. Due to the large
number of nodes and complex states in the real network, SDP component deployment has a

2750 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

huge state space and reconciliation space. While other DRL algorithms, such as Q-learning
[35] with the increase of state space and action space, the size of q-table increases continuously,
that is, the problem of dimension explosion occurs. Thus, the time required to find the feasible
solution in the q-table is increasing, which will greatly affect the efficiency of the algorithm.
DQN combines Q-learning with Convolutional Neural Networks (CNN) [36] to solve the
problem of dimension explosion to a certain extent. However, DQN [37] has the problem of
multi-dimensional output difficulty. DQN usually selects the action with the highest Q-value
as the output, but it cannot output other actions with the highest Q-value, that is, the subsequent
output is no longer the optimal solution. DDPG has the advantage of large state space and
action space. Each deployment scheme of SDP component deployment is a multidimensional
solution. A complete deployment solution can be output using DDPG algorithm. Therefore,
each output is guaranteed to be optimal for the current state without high computational and
storage costs.

To sum up, we use DDPG based algorithm to calculate SDP component deployment. In
addition, we add different random numbers to each dimension of DDPG algorithm to improve
the exploration ability of the algorithm. The corresponding state space, action space and
reward are defined as follows.

4.2 Parameter setting

4.2.1 Space of State
The state space reflects the changes of the network state based on the deployment scheme at
different times, and is an N×5 matrix . We define the state space of time 𝑡𝑡 as follows:

𝑆𝑆𝑡𝑡 = �𝑆𝑆𝑞𝑞1

𝑡𝑡 ,𝑆𝑆𝑞𝑞2
𝑡𝑡 , . . . , 𝑆𝑆𝑞𝑞𝑁𝑁

𝑡𝑡 �𝑇𝑇 = (𝐷𝐷𝑡𝑡,𝑇𝑇𝑡𝑡 ,𝑅𝑅𝑡𝑡,𝛷𝛷𝑡𝑡,𝑃𝑃𝑃𝑃𝑡𝑡) (26)

where N is the number of nodes in the SDP network, and 𝑆𝑆𝑞𝑞𝑖𝑖 is a column vector with a
length of N, representing the current time state of the node 𝑞𝑞𝑖𝑖, including the direction and size
of data outflow, delay, attack tolerance, load size, and deployment cost. The definition of
network status 𝑆𝑆𝑞𝑞𝑖𝑖 is as follows:

𝑆𝑆𝑞𝑞𝑖𝑖
𝑡𝑡 = �𝑑𝑑𝑞𝑞𝑖𝑖

𝑡𝑡 , 𝑡𝑡𝑞𝑞𝑖𝑖
𝑡𝑡 ,𝑅𝑅𝑞𝑞𝑖𝑖

𝑡𝑡 ,𝜙𝜙𝑞𝑞𝑖𝑖
𝑡𝑡 ,𝑃𝑃𝑃𝑃𝑞𝑞𝑖𝑖

𝑡𝑡 �𝑇𝑇 (27)

It is worth noting that when t=0, 𝑆𝑆𝑡𝑡 indicates the initial state of the network. We define the
initial state as that the user request flow starts to forward the data flow and plan the path
according to the Dijkstra algorithm [38] and the shortest path principle.

In addition, 𝐷𝐷𝑡𝑡 defines the data outflow direction and size of each node at time t. Its value
represents the size of the data volume, and the position represents the outflow direction, that
is, the flow to the node. Therefore, 𝐷𝐷𝑡𝑡 = (𝑑𝑑0𝑡𝑡 ,𝑑𝑑1𝑡𝑡 , . . . ,𝑑𝑑𝑁𝑁𝑡𝑡)𝑇𝑇. 𝑇𝑇𝑡𝑡 defines the delay of each node
at time t, that is, the total delay sum of the access node is taken as this node, so 𝑇𝑇𝑡𝑡 =
(𝑡𝑡0𝑡𝑡 , 𝑡𝑡1𝑡𝑡 , . . . , 𝑡𝑡𝑁𝑁𝑡𝑡)𝑇𝑇 . 𝑅𝑅𝑡𝑡 defines the attack tolerance of each node at time t, hence 𝑅𝑅𝑡𝑡 =
(𝑅𝑅0𝑡𝑡 ,𝑅𝑅1𝑡𝑡 , . . . ,𝑅𝑅𝑁𝑁𝑡𝑡)𝑇𝑇. 𝛷𝛷𝑡𝑡 defines the load size of each node at time t, that is, the sum of the loads
of the link to which the SDP component is connected, therefore, 𝛷𝛷𝑡𝑡 = (𝜙𝜙0𝑡𝑡 ,𝜙𝜙1𝑡𝑡 , . . . ,𝜙𝜙𝑁𝑁𝑡𝑡)𝑇𝑇. 𝑃𝑃𝑃𝑃𝑡𝑡
defines the cost of deploying SDP components at each node at time t, therefore, 𝑃𝑃𝑃𝑃𝑡𝑡 =
(𝑃𝑃𝑃𝑃0𝑡𝑡 ,𝑃𝑃𝑃𝑃1𝑡𝑡 , . . . ,𝑃𝑃𝑃𝑃𝑁𝑁𝑡𝑡)𝑇𝑇. All the above variables except 𝐷𝐷𝑡𝑡, when the node is not a deployment
node, their values are set to 0, that is, other N dimensional column vectors can have at most M

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2751

non-zero values.

4.2.2 Space of Action
The action space represents the change strategy of network state at each step. In this study, it
refers to the position vector of SDP components planed to be deployed. No more than M SDP
components can be deployed in the SDP network. We use binary numbers to express the
deployment of SDP components. The algorithm measures the priority of deployment location
according to the reward, and uses 0/1 in the action space to indicate whether to deploy SDP
components. There are at most M non-zero values. The action space used to deploy SDP
components at time t is shown as follows:

𝐴𝐴𝑡𝑡 = (𝑍𝑍1,𝑍𝑍2, . . . ,𝑍𝑍𝑁𝑁)𝑇𝑇 (28)

4.2.3 Reward
The DDPG environment provides corresponding rewards according to the next network state
formed by the action on the network, and guides the agent to constantly find a more optimal
solution. Therefore, the reward should be designed based on (20) to achieve the optimization
goal. However, 𝑡𝑡𝑖𝑖 ,∆𝜙𝜙,𝑅𝑅,𝑃𝑃𝑃𝑃 have different dimensions and orders of magnitude, which affects
the results of data analysis. To solve this problem, we use the Z-score function to standardize
the index value that needs to calculate the reward:

𝑓𝑓(𝑥𝑥) = 𝑥𝑥−𝑥𝑥

𝜎𝜎
, 𝑥𝑥 ∈ 𝑋𝑋 (29)

After performing the action, the agent will get the reward according to the next network

status.

𝑟𝑟𝑡𝑡 = 𝑓𝑓(𝑧𝑧) (30)

4.2.4 State Transition
The state transition is defined as (𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝑆𝑆𝑡𝑡+1), where 𝑆𝑆𝑡𝑡 is the current network status, 𝐴𝐴𝑡𝑡 is
the action taken by the agent (the location and number of SDP components deployed), 𝑆𝑆𝑡𝑡+1 is
the new network status after getting reward 𝑟𝑟𝑡𝑡 and perform action 𝐴𝐴𝑡𝑡.

Then, we design the algorithm according to the state space, action space and reward defined
above. The initial deployment algorithm of SDP component based on DDPG is described in
Algorithm 1. The redeployment algorithm to ensure the delay and other constraints are met
when some SDP components are compromised under cyber attacks is described in Algorithm
2. In addition, we study the deployment of SDP components in the node varying situations, in
which the deployment changes with the different cyber attacks.

4.3 Introduction to Algorithm
Next, according to the above optimization objectives and related parameters, we design the
algorithm as follows. Our proposed model can be dynamically deployed for a given network
topology and corresponding network state, as shown in Algorithm 1.

2752 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

Algorithm 1: DDPG-based SDP components initial placement
 Input: Request traffic from initial hosts RT, network topology G,
weight factors 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3
 Output: Number of SDP components M, locations of SDP components L
1 Initialize the DDPG environment env with G, RT, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3;
2 for episode=0; episode<maxEpisode do
3 Divide network into NA areas by the LPA algorithm;
4 Randomly selecting one node in each areas as the initial placement locations IPL;
5 Initialize the initial network state 𝑆𝑆0 according to the env and IPL;
6 for i=0; i<maxIteration do
7 Get the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝 according to 𝑆𝑆𝑖𝑖 by DDPG;
8 Add exploration noise 𝑁𝑁𝑡𝑡 on the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝, then get the next action 𝐴𝐴𝑖𝑖;
9 Get the next state 𝑆𝑆𝑖𝑖+1 and reward 𝑅𝑅𝑅𝑅𝑖𝑖 according to 𝐴𝐴𝑖𝑖 by env;
10 Train the model in DDPG according to 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1,𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝑖𝑖;
11 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+1;
12 Get the number of SDP components M and the locations of SDP components L
according to the action with the maximum reward.

When an attacked SDP component fails in the network, the redeployment algorithm is

triggered, as shown in Algorithm 2. Firstly, the network state, such as network traffic, network
topology, weight factor, etc., is input into the algorithm as parameters and the DDPG
environment variables are initialized. Then, randomly select an ordinary node around the failed
SDP node as the initial redeployment position, start iterative search for the most suitable
deployment position, and output it. In addition, there may be cases where the original normal
SDP node accepts new service request traffic, and it is defined as a redirection node. Similar
to Algorithm 1, in line 7, we introduce random variables 𝑁𝑁𝑡𝑡 as exploration noise.

Algorithm 2: DDPG-based SDP components replacement when compromised
 Input: Number of compromised SDP components CN, locations of compromised
SDP components CL, network traffic flow F, network topology G, weight factors
𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3
 Output: Locations of the new placed SDP components NL
1 Initialize the DDPG environment env with F, G, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3;
2 for episode=0; episode<maxEpisode do
3 Randomly selecting one node near each compromised SDP component as the initial
 replacement location IRL;
4 Initialize the initial network state according to the env and IRL;
5 for i=0; i<maxIteration do
6 Get the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝 according to 𝑆𝑆𝑖𝑖 by DDPG;
7 Add exploration noise 𝑁𝑁𝑡𝑡 on the predicted next action 𝐴𝐴𝑖𝑖

𝑝𝑝, then get the next action
𝐴𝐴𝑖𝑖;
8 Get the next state 𝑆𝑆𝑖𝑖+1 and reward 𝑅𝑅𝑅𝑅𝑖𝑖 according to 𝐴𝐴𝑖𝑖 by env;
9 Train the model in DDPG according to 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1,𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝑖𝑖;
10 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+1;
11 Get the locations of the new placed SDP components NL according to the action
with the maximum reward.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2753

5. Evaluation
This section aims to evaluate the proposed solution by comparing it with different method,
thus demonstrating the feasibility of deploying events in the WAN environment.

5.1 Platform
In order to evaluate the performance of the proposed solution, we set up a multi-node test

platform based on Mininet 2.3.0 and RYU 4.34. We deployed VMware ESXI 6.5 as the
management framework of virtualization service. The experimental platform is run on Ubuntu
22.04.3LTS operating system and has Intel Xeon(R) Gold 5118 CPU @ 2.30GHz with 48
cores and 48 GB RAM. In addition, DDPG-SDPCR algorithm is implemented based on
Python 3.7.17 language and TensorFlow 1.13 framework.

5.2 Topology and Parameter
The proposed model and above mentioned methods are implemented over the topologies

from Internet Topology Zoo [39]. Internet Topology Zoo currently includes 261 topologies,
and the parameters of them are from real world. We selected 2 representative topologies, which
often appear in the literature on network problem, to evaluate the proposed model and compare
it to the baseline. Then the proposed model was run over them.

We use the real world network topologies to evaluate the proposed DDPG-SDPCR model
and algorithms, that are the ATT North America network from the United States and the Geant
network from Europe, which include 25 nodes and 57 edges, and 34 nodes and 52 nodes
respectively. The distance and relative position between nodes are calculated by Haversine
formula [40] according to the latitude and longitude coordinates provided by Internet
Topology Zoo, and the shortest path between nodes is calculated by Dijkstra algorithm [38].
The propagation delay between nodes and transmission delay of wired network are calculated
by (2) and (3). The parameters in the experiment are listed in Table 3 and Table 4.

Table 3. Parameters of AAT North America.
Name or description Value
Number of normal switches 15
Number of SDP components 10

𝜇𝜇1 0.4
𝜇𝜇2 0.3
𝜇𝜇3 0.2
𝜇𝜇4 0.1

Table 4. Parameters of Geant.

Name or description Value
Number of normal switches 20
Number of SDP components 14

𝜇𝜇1 0.4
𝜇𝜇2 0.3
𝜇𝜇3 0.2
𝜇𝜇4 0.1

In order to analyze and explore the influence of SDP nodes damaged by malicious attacks

on the flow delay of the whole SDP network, we tested the network delay in 4 network
environments with different traffic sizes: 1Mbits, 2Mbits, 4Mbits and 8Mbits. In order to
analyze and explore the difference of the impact of malicious attacks on the flow delay of the

2754 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

whole network, we set the failure rate of SDP nodes to 0.1, and randomly selected two kinds
of three SDP nodes to conduct experimental tests. The input parameters in DDPG-SDPCR are
shown in Table 3 and Table 4, and the details of the two faults are shown in Table 5. We
firstly determine the deployment position of SDP nodes in the input topology according to
Algorithm 1. Then, due to cyber attacks, according to the failure probability, some SDP nodes
fail. Corresponding topology changes are shown in Figs. 4-5 and Figs. 8-9.

Table 5. The specific situation of network failure.
Topology ATT North America Geant
Compromised SDP Node
Under Attack 1 4, 10, 22 2, 10, 12

Compromised SDP Node
Under Attack 2 7, 16, 25 3, 9, 11

Fig. 4. Compromised SDP nodes under attack 1

in ATT North America.
Fig. 5. Compromised SDP nodes under attack 2

in ATT North America.

Fig. 6. The TD of ATT North America changes
with different situations under attack 1.(Greedy)

Fig. 7. The TD of ATT North America changes
with different situations under attack 2.(Greedy)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2755

Fig. 8. Compromised SDP nodes under attack 1

in Geant.
Fig. 9. Compromised SDP nodes under attack 2

in Geant.

Fig. 10. The TD of Geant changes with different
situations under attack 1.(Greedy)

Fig. 11. The TD of Geant changes with different
situations under attack 2.(Greedy)

According to the failure probability, we randomly select 2 different failure situations under

attacks in the ATT North America network, as shown in Figs. 4-5. The yellow nodes are the
normal nodes, the lime nodes are the SDP nodes, and the orangered nodes are the damaged
SDP nodes. Node 4, 10 and 22 in Fig. 4, and Node 7, 16 and 25 in Fig. 5, which are affected
by Attack 1 and Attack 2. Similarly, Figs. 8-9 show the situation when SDP nodes in Geant
network are attacked and fail, in which the failed nodes affected by Attack 1 are 2, 10 and 12,
and those affected by Attack 2 are 3, 9, 11. Then, according to the serial number of the failed
nodes and the corresponding user requests relationships, we use greedy algorithm as baseline
to shunt the load of the failed SDP nodes, and compare it with our proposed DDPG-SDPCR
algorithm.

As shown in Figs. 6-7, under two kinds of attacks, the average Transmission Delay (TD) of
ATT North America network increased by 9.257ms (34.82%), 15.630ms (37.54%), 35.444ms
(45.56%), and 48.824ms (40.81%), and 16.437ms (61.83%), 40.739ms (97.86%), 74.121ms
(95.27%), and 77.293ms (64.61%) when the traffic size was 1Mbits, 2Mbits, 4Mbits, and
8Mbits respectively. Similarly, as shown in Figs. 10-11, under two kinds of attacks, the
average TD of Geant network increased by 29.922ms (131.70%), 36.776ms (101.97%),
61.176ms (111.81%), and 114.670ms (140.96%), and 5.714ms (113.18%), 26.491ms
(73.45%), 40.02ms (73.15%), and 56.31ms(69.23%), respectively. It can be found that in both
topologies, even if the network load redirection strategy based on greedy algorithm is adopted,
the network attack will still have a significant impact on the performance of SDP network after

2756 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

the SDP node fails. In addition, due to the difference of node location and the size of traffic
requested by the host, the SDP node failure caused by different attacks has significant
differences in the increase of TD. To sum up, a more effective fault tolerance strategy is
necessary.

In order to evaluate the mitigation effect of our DDPG-SDPCR mechanism on the increase
of network delay caused by SDP node failure and damaged in the above two networks, we
conducted relevant tests. We tested each network for 12 times, including 2 kinds of attacks
and 4 kinds of traffic size (1Mbits, 2Mbits, 4Mbits and 8Mbits), and discussed the normal
situation (not attacked), redirection recovery based on greedy algorithm (as a comparison
baseline) and redeployment recovery based on DDPG-SDPCR mechanism, as shown in Figs.
12-23.

Fig. 12. ATT North America redeployed by

DDPG-SDPCR under attack 1.
Fig. 13. ATT North America redeployed by

DDPG-SDPCR under attack 2.

Figs. 12-13 are the redeployment topology diagrams obtained by Algorithm 2 after SDP

node failure caused by two kinds of attacks on ATT North America network. Among them,
except normal nodes, SDP nodes and damaged nodes, limegreen nodes are redeployed SDP
nodes and yellowgreen nodes are redirected SDP nodes. As shown in Fig. 12, in order to cope
with SDP nodes failures caused by Attack 1, Algorithm 2 gives a redeployment node Node 5,
and 3 redirection nodes Node 4, 22 and 24. As a normal SDP node, the latter bears a part of
the requested traffic of the originating host because there are faulty SDP nodes around. In this
way, the number of redeployment nodes can be reduced and the redeployment cost can be
reduced. Similarly, Fig. 13 shows the redeployment in case of Attack 2. The redeployment
node is Node 9, and the redirection nodes are Node 7, 12 and 16.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2757

Fig. 14. The TD comparison of ATT North

America among different situations under Attack
1.

Fig. 15. The TD comparison of ATT North
America among different situations under Attack

2.

Fig. 16. The TD of ATT North America changes
with different situations under Attack 1.(DDPG-

SDPCR)

Fig. 17. The TD of ATT North America changes
with different situations under Attack 1.(DDPG-

SDPCR)

As shown in Fig. 14, under normal circumstances, TD of ATT North America network are

26.582ms, 41.631ms, 77.799ms, and 119.631ms when the traffic size are
1Mbits,2Mbits,4Mbits, and 8Mbits, respectively. In the case of Attack 1, after redirection by
greedy algorithm, the corresponding TD are 35.839ms, 57.261ms, 113.243ms, and 168.455ms,
respectively. After the redeployment of DDPG-SDPCR mechanism, the corresponding TD are
31.698ms, 49.806ms, 99.202ms, and 147.320ms. Combined with the above data, after the
redeployment of DDPG-SDPCR, compared with the normal situation, TD increased by
5.116ms (19.24%), 8.175ms (19.64%), 21.404ms (27.51%), and 27.689ms (23.14%),
respectively, and compared with greedy algorithm, decreased by 4.142ms (11.56%), 7.455ms
(13.02%), 14.041ms (12.40%), 21.136ms (12.55%), respectively. As shown in Fig. 15, in the
case of Attack 2, after redirection by greedy algorithm, TD under different traffic size are
43.019ms, 82.37ms, 151.920ms, and 196.924ms, respectively. After the redeployment of
DDPG-SDPCR mechanism, the corresponding TD are 34.281ms, 69.033ms, 123.259ms, and
165.954ms, respectively. Combined with the above data, after the redeployment of DDPG-
SDPCR, compared with the normal situation, TD increased by 7.699ms (28.96%), 27.402ms
(65.82%), 45.461ms (58.43%), and 46.323ms (38.72%), respectively, and compared with
greedy algorithm, decreased by 8.738ms (20.31%), 13.337ms (16.19%), 28.660ms (18.87%),
and 30.971ms (15.73%), respectively. With the increase of traffic, the TD of the network will

2758 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

increase. It can be found that compared with greedy algorithm, our proposed DDPG-SDPCR
mechanism can alleviate the TD increase caused by attacks to a great extent, and significantly
reduce the delay increase caused by greedy algorithm. Figs. 16-17 are line charts of TD
changing with time under different traffic sizes in ATT North America network under Attack
1 and Attack 2, respectively. It can be found that the cyber attack occurred at 50s, then the
greedy algorithm started to run, and TD increase greatly. At about 75s, DDPG-SDPCR
mechanism started to run, and TD dropped significantly. Through the above two line charts,
the advantages of DDPG-SDPCR compared with greedy algorithm can be intuitively
displayed. In addition, two different attacks have different effects, and Attack 2 makes the TD
of the network increase more.

Fig. 18. Geant redeployed by DDPG-SDPCR

under Attack 1.
Fig. 19. Geant redeployed by DDPG-SDPCR

under Attack 2.

 Figs. 18-19 show the redeployment topology diagram of Geant network after SDP node

failure caused by two kinds of attacks, which is calculated by algorithm 2. As shown in Fig.
18, in order to deal with some SDP node failures caused by Attack, algorithm 2 gives
redeployment node Node 23 and redirection nodes Node 3, 8, and 11. Similarly, Fig. 19 shows
the redeployment in the case of Attack 2. The redeployment node is Node 27, and the
redirection nodes are Node 2, 7, 8, and 16.

Fig. 20. The TD comparison of Geant among

different situations under Attack 1.
Fig. 21. The TD comparison of Geant among

different situations under Attack 2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2759

Fig. 22. The TD of Geant changes with different

situations under Attack 1.(DDPG-SDPCR)
Fig. 23. The TD of Geant changes with different

situations under Attack 2.(DDPG-SDPCR)

As shown in Fig. 20, under normal circumstances, the TD of Geant network are 22.720ms,

36.065ms, 54.712ms, and 81.347ms when the traffic size are 1Mbits,2Mbits,4Mbits,and
8Mbits, respectively. In the case of Attack 1, after redirection by greedy algorithm, the
corresponding TD are 52.641ms, 72.841ms, 115.888ms, and 196.017ms, respectively. After
the redeployment of DDPG-SDPCR mechanism, the corresponding TD are 34.989ms,
55.455ms, 89.137ms, and 154.853ms, respectively. Combined with the above data, after the
redeployment, TD increased by 12.269ms (54.00%), 19.390ms (53.76%), 34.425ms (62.92%),
and 73.506ms (90.36%), respectively, compared with the normal situation, and the
corresponding TD decreased by 17.652ms (33.53%), 17.386ms (23.87%), 26.751ms (23.08%),
and 41.164ms (21.00%), respectively, compared with the greedy algorithm. As shown in Fig.
21, in the case of Attack 2, after redirection by greedy algorithm, the corresponding TD under
different traffic size are 48.433ms, 62.557ms, 94.736ms, and 137.660ms, respectively. After
the redeployment of DDPG-SDPCR mechanism, the corresponding TD are 30.794ms,
46.481ms, 71.890ms, and 104.647ms, respectively. Combined with the above data, after the
redeployment, TD increased by 8.074ms (35.54%), 10.416ms (28.88%), 17.178ms (31.40%),
and 23.299ms (28.64%), respectively, compared with the normal situation, and the
corresponding TD decreased by 17.640ms (36.42%), 16.076ms (25.70%), 22.846ms
(24.115%), and 33.014ms (23.98%), respectively, compared with the greedy algorithm. With
the increase of traffic, the TD of the network will increase. It can be found that compared with
the greedy algorithm, our proposed DDPG-SDPCR mechanism can greatly alleviate the TD
increase caused by the attack and significantly reduce the delay increase caused by the greedy
algorithm. Figs. 22-23 are line charts of TD changing with time under different traffic sizes in
Geant network under Attack 1 and Attack 2, respectively. It can be found that the cyber attack
occurred at 50s, then the greedy algorithm started to run, and TD increase greatly. At about
75s, DDPG-SDPCR mechanism started to run, and TD dropped significantly. Through the
above two line charts, the advantages of DDPG-SDPCR compared with greedy algorithm can
be intuitively displayed. In addition, two different attacks have different effects, and Attack 1
makes the TD of the network increase more.

6. Conclusion
In this study, a wide area SDP framework and corresponding attack tolerance mechanism

are proposed, which can provide users with wide area remote intranet resource security access

2760 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

services. In addition, considering the potential cyber attacks, the SDP components can be
redeployed after some SDP components fail due to malicious attacks, and the delay and
bandwidth requirements of users can be met. Based on DDPG-SDPCR redeployment
mechanism, considering the constraints of network traffic, link bandwidth and delay, the
appreciate nodes in the network are selected as the deployment locations of the newly added
SDP components. In addition, this study also carries out experimental tests and results analysis
for different network topologies, different attack scenarios and different traffic sizes, and
compares them with the baseline. The results show that our proposed framework based on
DDPG can effectively reduce the impact of malicious attacks on the SDP wide area network,
and it is superior to the baseline in terms of delay, link load and attack tolerance.

Acknowledgement
This work was supported by Science and Technology Innovation leading Talents Subsidy

Project of Central Plains (Grant No. 244200510038).

References
[1] Moubayed, A., Refaey, A., Shami, A., “Software-Defined Perimeter (SDP): State of the Art Secure

Solution for Modern Networks,” IEEE Network, vol.33, no.5, pp.226-233, 2019.
Article(CrossRefLink)

[2] Palmo, Y., Tanimoto, S., Sato, H. et al., “A Consideration of Scalability for Software Defined
Perimeter Based on the Zero-trust Model,” in Proc. of 2021 10th International Congress on
Advanced Applied Informatics (IIAI-AAI), pp.717-724, 2021. Article(CrossRefLink)

[3] Phu, A. T., Li, B., Ullah, F. et al., “Defending SDN against packet injection attacks using deep
learning,” Computer Networks, vol.234, 2023. Article(CrossRefLink)

[4] Singh, J., Refaey, A., Koilpillai, J., “Adoption of the Software-Defined Perimeter (SDP)
Architecture for Infrastructure as a Service,” Canadian Journal of Electrical and Computer
Engineering, vol.43, no.4, pp.357-363, 2020. Article(CrossRefLink)

[5] Sallam, A., Refaey, A., Shami, A., “On the Security of SDN: A Completed Secure and Scalable
Framework Using the Software-Defined Perimeter,” IEEE Access, vol.7, pp.146577-146587, 2019.
Article(CrossRefLink)

[6] Bakhshi, B., Mangues-Bafalluy, J., Baranda, J., “Multi-provider NFV network service delegation
via average reward reinforcement learning,” Computer Networks, vol.224, 2023.
Article(CrossRefLink)

[7] Fang, J., Zhao, G., Xu, H. et al., “Reveal: Robustness-aware VNF placement and request
scheduling in edge clouds,” Computer Networks, vol.233, 2023. Article(CrossRefLink)

[8] Wu, Z., Peng, S., Liu, L. et al., “Detection of Improved Collusive Interest Flooding Attacks Using
BO-GBM Fusion Algorithm in NDN,” IEEE Transactions on Network Science and Engineering,
vol.10, no.1, pp.239-252, 2023. Article(CrossRefLink)

[9] Kalafatidis, S., Skaperas, S., Demiroglou, V. et al., “Logically-Centralized SDN-Based NDN
Strategies for Wireless Mesh Smart-City Networks,” Future Internet, vol.15, no.1, 2022.
Article(CrossRefLink)

[10] Rodrigues, D. O., Braun, T., Maia, G. et al., “Mobility-aware Latency-constrained Data Placement
in SDN-enabled Edge Networks,” in Proc. of NOMS 2023-2023 IEEE/IFIP Network Operations
and Management Symposium, pp.1-9, 2023. Article(CrossRefLink)

[11] Naseri, A., Ahmadi, M., PourKarimi, L., “Placement of SDN controllers based on network setup
cost and latency of control packets,” Computer Communications, vol.208, pp.15-28, 2023.
Article(CrossRefLink)

https://doi.org/10.1109/MNET.2019.1800324
https://doi.org/10.1109/IIAI-AAI53430.2021.00127
https://doi.org/10.1016/j.comnet.2023.109935
https://doi.org/10.1109/CJECE.2020.3005316
https://doi.org/10.1109/ACCESS.2019.2939780
https://doi.org/10.1016/j.comnet.2023.109611
https://doi.org/10.1016/j.comnet.2023.109882
https://doi.org/10.1109/TNSE.2022.3206581
https://doi.org/10.3390/fi15010019
https://doi.org/10.1109/NOMS56928.2023.10154445
https://doi.org/10.1016/j.comcom.2023.05.015

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2761

[12] Peng, S., Niu, D., Jin, K. et al., “Toward low-delay and low-cost controller placement in SDNs: a
hybrid heuristic method,” in Proc. of the 2023 9th International Conference on Computing and
Artificial Intelligence, pp.743-751, 2023. Article(CrossRefLink)

[13] Yue, G., Wang, Y., Liu, Y., “Rule Placement and Switch Migration-based Scheme for Controller
Load Balancing in SDN,” in Proc. of 2022 IEEE Symposium on Computers and Communications
(ISCC), pp.1-6, 2022. Article(CrossRefLink)

[14] Xiao, J., Pan, X., Liu, J. et al., “Load balancing strategy for SDN multi-controller clusters based
on load prediction,” The Journal of Supercomputing, vol.80, pp.5136-5162, 2024.
Article(CrossRefLink)

[15] Ramya, G., Manoharan, R., “Traffic-aware dynamic controller placement in SDN using NFV,”
The Journal of Supercomputing, vol.79, no.2, pp.2082-2107, 2023. Article(CrossRefLink)

[16] Maity, I., Dhiman, R., Misra, S., “EnPlace: Energy-Aware Network Partitioning for Controller
Placement in SDN,” IEEE Transactions on Green Communications and Networking, vol.7, no.1,
pp.183-193, 2023. Article(CrossRefLink)

[17] Kondo, T., Guillen, L., Izumi, S. et al., “An Energy Efficient SDN Controller Placement with
Delay Constraints,” in Proc. of 2023 24st Asia-Pacific Network Operations and Management
Symposium (APNOMS), pp.119-124, 2023. Article(CrossRefLink)

[18] Xu, C., Xu, C., Li, B. et al., “Load-aware dynamic controller placement based on deep
reinforcement learning in SDN-enabled mobile cloud-edge computing networks,” Computer
Networks, vol.234, 2023. Article(CrossRefLink)

[19] Heller, B., Sherwood, R., McKeown, N., “The controller placement problem,” in Proc. of HotSDN
'12: Proceedings of the first workshop on Hot topics in software defined networks, pp.7-12, 2012.
Article(CrossRefLink)

[20] DOcplex Python Modeling API, ILOG CPLEX Optimization Studio. [Online]. Available:
https://www.ibm.com/docs/zh/icos/22.1.1?topic=docplex-python-modeling-api

[21] Cui, J., Zhang, J., He, J. et al., “DDoS detection and defense mechanism for SDN controllers with
K-Means,” in Proc. of 2020 IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), pp.394-401, 2020. Article(CrossRefLink)

[22] Chakrabarty, D., Goyal, P., Krishnaswamy, R., “The Non-Uniform k-Center Problem,” ACM
Transactions on Algorithms (TALG), vol.16, no.4, pp.1-19, 2020. Article(CrossRefLink)

[23] Drezner, Z., Facility Location: A Survey of Applications and Methods, New York, NY, USA:
Springer-Verlag, 1995. Article(CrossRefLink)

[24] Owen, S. H., Daskin, M. S., “Strategic facility location: A review,” European Journal of
Operational Research, vol.111, no.3, pp.423-447, 1998. Article(CrossRefLink)

[25] Jacob, J., Shinde, S., and Narayan, D. G., “An Efficient Controller Placement Algorithm using
Clustering in Software Defined Networks,” Journal of Telecommunications and Information
Technology, vol.4, no.4, pp.9-17, 2023. Article(CrossRefLink)

[26] Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hock, D., Jarschel, M., and Hoffmann, M.,
“Heuristic Approaches to the Controller Placement Problem in Large Scale SDN Networks,” IEEE
Transactions on Network and Service Management, vol.12, no.1, pp.4-17, 2015.
Article(CrossRefLink)

[27] Singh, A. K., Maurya, S., Kumar, N., and Srivastava, S., “Heuristic approaches for the reliable
SDN controller placement problem,” Transactions on Emerging Telecommunications
Technologies, vol.31, no.2, 2020. Article(CrossRefLink)

[28] Singh, A. K., Srivastava, S., and Banerjea, S., “Evaluating heuristic techniques as a solution of
controller placement problem in SDN,” Journal of Ambient Intelligence and Humanized
Computing, vol.14, no.9, pp.11729-11746, 2023. Article(CrossRefLink)

[29] Gholamrezaei, R., Mirjalily, G., Emadi, S., “Learning-based multi-constraint resilient controller
placement and assignment in software-defined networks using covering graph,” Transactions on
Emerging Telecommunications Technologies, vol.34, no.4, 2023. Article(CrossRefLink)

[30] Llorens-Carrodeguas, A., Cervelló-Pastor, C., Valera, F., “DQN-based intelligent controller for
multiple edge domains,” Journal of Network and Computer Applications, vol.218, 2023.
Article(CrossRefLink)

https://doi.org/10.1145/3594315.3594400
https://doi.org/10.1109/ISCC55528.2022.9912885
https://doi.org/10.1007/s11227-023-05658-6
https://doi.org/10.1007/s11227-022-04717-8
https://doi.org/10.1109/TGCN.2022.3175901
https://ieeexplore.ieee.org/document/10258129
https://doi.org/10.1016/j.comnet.2023.109900
https://doi.org/10.1145/2342441.2342444
https://www.ibm.com/docs/zh/icos/22.1.1?topic=docplex-python-modeling-api
https://doi.org/10.1109/UCC48980.2020.00062
https://doi.org/10.1145/3392720
https://link.springer.com/book/9780387945453
https://doi.org/10.1016/S0377-2217(98)00186-6
https://doi.org/10.26636/jtit.2023.4.1371
https://doi.org/10.1109/TNSM.2015.2402432
https://doi.org/10.1002/ett.3761
https://doi.org/10.1007/s12652-022-03733-z
https://doi.org/10.1002/ett.4742
https://doi.org/10.1016/j.jnca.2023.103705

2762 Zheng Zhang et al.: DDPG-SDPCR: A DDPG-based Software Defined Perimeter
 Components Redeployment

[31] Li, B., Deng, X., Chen, X. et al., “MEC-Based Dynamic Controller Placement in SD-IoV: A Deep
Reinforcement Learning Approach,” IEEE Transactions on Vehicular Technology, vol.71, no.9,
pp.10044-10058, 2022. Article(CrossRefLink)

[32] Gong, Y., Wei, Y., Yu, F. R. et al., “Slicing-based resource optimization in multi-access edge
network using ensemble learning aided DDPG algorithm,” Journal of Communications and
Networks, vol.25, no.1, pp.1-14, 2023. Article(CrossRefLink)

[33] Barrett, T., Clements, W., Foerster, J., Lvovsky, A., “Exploratory Combinatorial Optimization
with Reinforcement Learning,” in Proc. of the AAAI Conference on Artificial Intelligence, vol.34,
no.4, pp.3243-3250, Apr. 2020. Article(CrossRefLink)

[34] He, H., Zhou, F., Zhao, Y. et al., “Hypergraph convolution mix DDPG for multi-aerial base station
deployment,” Journal of Cloud Computing, vol.12, 2023. Article(CrossRefLink)

[35] Xu, Q., Su, Z., Lu, R., “Game Theory and Reinforcement Learning Based Secure Edge Caching
in Mobile Social Networks,” IEEE Transactions on Information Forensics and Security, vol.15,
pp.3415-3429, 2020. Article(CrossRefLink)

[36] Priyadarshini, I., Mohanty, P., Alkhayyat, A. et al., “SDN and application layer DDoS attacks
detection in IoT devices by attention-based Bi-LSTM-CNN,” Transactions on Emerging
Telecommunications Technologies, vol.34, no.11, 2023. Article(CrossRefLink)

[37] Du, T., Li, C., Luo, Y., “Latency-aware computation offloading and DQN-based resource
allocation approaches in SDN-enabled MEC,” Ad Hoc Networks, vol.135, 2022.
Article(CrossRefLink)

[38] Dijkstra, E. W., A Note on Two Problems in Connexion with Graphs, Edsger Wybe Dijkstra: His
Life, Work, and Legacy, pp.287-290, 2022. Article(CrossRefLink)

[39] Knight, S., Nguyen, H. X., Falkner, N. et al., “The Internet Topology Zoo,” IEEE Journal on
Selected Areas in Communications, vol.29, no.9, pp.1765-1775, 2011. Article(CrossRefLink)

[40] Robusto, C. C., “The Cosine-Haversine Formula,” The American Mathematical Monthly, vol.64,
no.1, pp.38-40, 1957. Article(CrossRefLink)

Zheng Zhang(first author), received the bachelor’s degree from PLA Strategic Support
Force Information Engineering University in 2019. He is currently pursuing Doctor Degree
in PLA Strategic Support Force Information Engineering University, Zhengzhou, China. His
research interests include software-defined networking, network security, and network
infrastructure security.

Quan Ren, is currently a research associate at the National Digital Switching System
Engineering and Technological Research and Development Center. He received the B.S.
degrees in information engineering from the Southeast University, Nanjing, China, in 2016.
He received the Ph.D. degree. in cyberspace security from the PLA Information Engineering
University, Zhengzhou, China, in 2022. His research interests include cyberspace security
and network architecture.

https://doi.org/10.1109/TVT.2022.3182048
https://doi.org/10.23919/JCN.2022.000054
https://doi.org/10.1609/aaai.v34i04.5723
https://doi.org/10.1186/s13677-023-00556-x
https://doi.org/10.1109/TIFS.2020.2980823
https://doi.org/10.1002/ett.4758
https://doi.org/10.1016/j.adhoc.2022.102950
https://doi.org/10.1145/3544585.3544600
https://doi.org/10.1109/JSAC.2011.111002
https://www.jstor.org/stable/2309088

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024 2763

Jie Lu, received the Ph.D. degree. from the PLA Strategic Support Force Information
Engineering University in 2022. His research interests include software-defined networking,
network management, and network security.

Yuxiang Hu(corresponding author), professor, deputy director of the third research office
of Information Technology Institute of PLA Strategic Support Force Information Engineering
University Zhengzhou, China. His research areas are next generation network architecture
and network security.

Hongchang Chen, professor, deputy director of the National Digital Switching System
Engineering Technology Research Center, and leader of the innovation team of the National
Science and Technology Progress Award for Network Communication and Switching
Technology. The main research areas are cyberspace security, big data and artificial
intelligence.

