• Title/Summary/Keyword: maize(Zea mays L.)

Search Result 121, Processing Time 0.027 seconds

Acidification and Biochar Effect on Ammonia Emission and Nitrogen Use Efficiency of Pig Slurry in the Vegetative Growth of Maize (Zea mays L.)

  • Lee, Seung Bin;Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.47-53
    • /
    • 2022
  • The objective of this study was to verify the effect of pig slurry application with acidification and biochar on feed value, nitrogen use efficiency (NUE) of maize forage, and ammonia (NH3) emission. The four treatments were applied: 1) non-pig slurry (only water as a control, C), 2) only pig slurry application (P), 3) acidified pig slurry application (AP), 4) acidified pig slurry application with biochar (APB). The pig slurry and biochar were applied at a rate of 150 kg N ha-1 and 300 kg ha-1, respectively. The AP and APB treatments enhanced all feed values compared to C and P treatments. The NUE for plant N was significantly increased 92.1% by AP and APB treatment, respectively, compared to the P treatment. On the other hand, feed values were not significantly different between AP and APB treatments. The acidification treatment with/without biochar significantly mitigated NH3 emission compared to the P treatment. The cumulative NH3 emission throughout the period of measurement decreased by 71.4% and 74.8% in the AP and APB treatments. Also, APB treatment reduced ammonia emission by 11.9% compared to AP treatment. The present study clearly showed that acidification and biochar can reduce ammonia emission from pig slurry application, and pig slurry application with acidification and biochar exhibited potential effects in feed value, NUE, and reducing N losses from pig slurry application through reduction of NH3 emission.

Alleviating Effect of Salicylic Acid Pre-treatment on Soil Moisture Stress of Waxy Corn

  • Seo, Youngho;Ryu, Sihwan;Park, Jongyeol;Choi, Jaekeun;Park, Kijin;Kim, Kyunghi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.213-217
    • /
    • 2015
  • Soil moisture shortage can reduce yield of waxy corn because maize is one of the sensitive crops to the drought stress. Farmers cannot irrigate due to limited water resource and irrigating facilities although applying water is the most effective practice to solve the drought problem. The study was conducted to investigate the pre-treatment effect of salicylic acid on reducing drought damage of waxy corn (Zea mays L.). Salicylic acid at concentration of 0.2 mM was applied at seven-leaf stage or ten-leaf stage three times. Drought stress was imposed by withholding irrigation from 11 days before anthesis to 10 days after anthesis. Application of salicylic acid significantly increased ear length by 11.0~12.3% and yield by 8.8~11.3% compared with non-treated control, indicating that the drought injuries of waxy corn can be alleviated through pre-treatment of salicylic acid at the vegetative stage.

Change in Physicochemical Properties according to Roasting Time by Maize (Zea mays L.) Varieties (옥수수 품종별 볶음 시간에 따른 이화학적 특성 변화)

  • Park, Hye-Young;Son, Beom-young;Choi, Yu-Chan;Bae, Hwan-Hee;Choi, Hye Sun;Park, Jiyoung;Sim, Eun-Yeong;Kim, Hong-Sig;Kim, Mi Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.5
    • /
    • pp.302-312
    • /
    • 2022
  • The purpose of this study was to investigate the Maillard reaction-related physicochemical properties of three maize varieties (Kwangpyeongok, Sinhwangok2ho and Gangdaok) after roasting them for different times (0, 15, 25, 40, and 55 minutes). The Maillard reaction is a non-enzymatic browning reaction involving reducing sugars and amino compounds. The content of reducing sugar, the causative agent of the Maillard reaction, decreased as roasting time increased. Gangdaok showed the lowest reducing sugar content of 1.04 mg/g after 55 minutes of roasting. In the elapsed roasting time, chromaticity 'L' and 'b' values decreased. At 55 minutes of roasting, wherein the Maillard reaction occurred most actively, Gangdaok showed the lowest 'L' value of 56.37 and the highest 'a' value of 7.60. Gangdaok had superior conditions for inducing the Maillard reaction compared to other varieties, and it is consider that 'flint-type', an endosperm characteristic, may have been the influencing agent. This study detected a total of 52 types of volatile aroma compounds (VACs), of which 28 were produced after roasting. Of the total VACs detected, 2-Formyl-5-methylfuran and 2-Furancarboxaldehyde accounted for 43.8~45.5% and have been confirmed to be the major VACs present in roasted maize. Most of the correlations between the Maillard reaction-related characteristics showed high correlation coefficients.

Relative Effectiveness of Bone Meal as a Phosphorus Fertilizer Compared with Fused Phosphate (용성인비와 비교한 골분의 인산질 비료 효과)

  • Chung, Jong-Bae;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • BACKGROUND: Bone meal is commonly used as a phosphorus (P) fertilizer in organic farming. Effectiveness of bone meal was compared with mineral P fertilizer to elucidate the optimum application rates of bone meal in crop production. METHODS AND RESULTS: The effects of bone meal and fused phosphate on plant growth and P uptake were determined in a pot experiment with maize (Zea mays L.) in a clay loam soil. Bone meal and fused phosphate were applied at 150 and 300 mg $P_2O_5/kg$ soil, and maize was grown for 3 consecutive growth periods of 4 to 5 weeks each. As compared with fused phosphate, total shoot growth of maize per pot was 3-6% lower in bone meal fertilization, and the difference was not significant in the application of 300 mg $P_2O_5/kg$. At the same P application rate, uptake of P by maize plants was 7-9% lower in bone meal treatment. The P use efficiency in bone meal treatments ranged from 11.9-13.6%, equivalent to 73-84% of the efficiency for fused phosphate treatments. CONCLUSION: The equivalence of immediate effectiveness of bone meal as a P fertilizer was at least 90% compared with fused phosphate in the pot experiment with maize. The results indicate that bone meal could be a reasonable alternative to chemical P fertilizers.

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

Effect of Weathering of Bottom Ash on Mitigation of Green House Gases Emission from Upland Soil (밭토양에서 저회의 풍화가 온실가스 배출 저감에 미치는 영향)

  • Heo, Do Young;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • BACKGROUND: Weathering of bottom ash (BA) might induce change of its surface texture and pH and affect physical and chemical properties of soil associated with greenhouse gas emission, when it is applied to the arable soil. This study was conducted to determine effect of weathering of BA in mitigating emission of greenhouse gases from upland soil. METHODS AND RESULTS: In a field experiment, methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emitted from the soil was periodically monitored using closed chamber. Three month-weathered BA and non-weathered BA were applied to an upland soil at the rates of 0, 200 Mg ha-1. Maize (Zea mays L.) was grown from July 1st to Oct 8th in 2018. Both BAs did not affect cumulative CH4 emission. Cumulative CO2 emission were 23.1, 19.8, and 18.8 Mg/ha/100days and cumulative N2O emission were 35.8, 20.9, and 17.7 kg/ha/100days for the control, non-weathered BA, and weathered BA, respectively. Weathering of BA did not decrease emission of greenhouse gases significantly, compared to the weathered BA in this study. In addition, both BAs did not decrease biomass yields of maize. CONCLUSION: BA might be a good soil amendment to mitigate emissions of CO2 and N2O from arable soil without adverse effect on crop productivity.

Tolerance Expression of Maize Genotypes to Exserohilum turcicum in North and South Korea

  • Kim, Soon-Kwon;Kim, Hyoung-Wook;Lee, Joon-Soo;Huh, Chang-Suk;Kim, Sun-Hwack;Lee, Kwang-Soo;Han, Hyoung-Jai
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.113-126
    • /
    • 2012
  • Northern corn leaf blight caused by Exserohilum turcicum Pass is considered the most important disease infecting corn (Zea mays L.) in the Peoples' Republic of Korea (North Korea). It contributes to the food shortage in North Korea. The objectives of the current research were to study resistance expression and responses of corn crosses made between ten hybrids from North Korea and inbreeding lines ($S_{3-4}$ stage) from the Republic of Korea (South Korea). The experiments were conducted in six trials with a total of 184 crosses including two commercial hybrids in each trial. The trials were conducted at two locations in North Korea (Mirim and Eunsan) and one location in South Korea (Gunwi) under natural infestation of E. turcicum. Host plant responses were rated on a scale of 1 (highly tolerant) to 9 (highly susceptible). A total of 111 crosses (62.4%) showed significant tolerant or susceptible response variations among three locations; 42 crosses (22.8%) at two locations and 69 crosses (39.0%) at one location, respectively. At least 8 crosses of high level of tolerance and 12 crosses of high level of susceptibility showed significantly different biotic responses (P = 0.05). The results of the current study and historical reviews of E. turcicum epidemics in both North and South Korea suggest that breeding of tolerance with quantitatively inherited genes should be carried out for a sustainable corn production in North Korea.

Comparative Gene Expression Analysis of Seed Development in Waxy and Dent Corn (Zea mays L.)

  • Sa, Kyu Jin;Choi, Ik-Young;Park, Dae Hyun;Lee, Ju Kyong
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.337-353
    • /
    • 2018
  • We used Illumina/HiSeq sequencing for analysis of gene expression profiling among four maize seed types (dent, CM3 and CM6; waxy, CM5 and CM19) at 10 DAP (days after pollination). A total of 88,993,000 (CM3), 103,817,340 (CM6), 103,139,640 (CM5), and 66,978,958 (CM19) sequence reads were generated with read lengths of about 0.9, 1.0, 1.0, and 0.7 billion bp, respectively. We obtained 69.1 (CM3), 71.0 (CM6), 71.2 (CM5), and 71.8% (CM19) high quality reads from the raw data and compared them with reference RNA sequences in a public DB (NCBI). It was revealed that mapped reads were 58%, 63%, 62%, and 62% of the EST reference in CM3, CM6, CM5 and CM19, respectively; and more than 51,000 genes were expressed based on RPKM criteria (over 0.25 value) in each CM3, CM6, CM5, and CM19 inbred line. In differentially expressed gene (DEG) analysis, we found that 3,527 genes were differentially expressed by at least two-fold with 1,709 upregulated in the two waxy inbred lines and 1,818 upregulated in the two dent inbred lines. We also detected genes for the sucrose and starch biosynthesis pathways based on BINs, and different expression patterns between waxy and dent inbred lines were shown for the gene set for starch synthesis, such as sh2, bt2, du1, wx1, and ae1. Although some genes were more expressed in dent lines, most genes for starch synthesis were much expressed in waxy lines. Especially, there was greater expression of the sus2 gene in both waxy lines compared with the dent lines.

The Study of Genetic Diversity for Drought Tolerance in Maize (옥수수 한발 내성에 관한 유전적 다양성 조사)

  • Kim, Hyo Chul;Lee, Yong Ho;Kim, Kyung-Hee;Shin, Seungho;Song, Kitae;Moon, Jun-Cheol;Lee, Byung-Moo;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.223-232
    • /
    • 2016
  • Drought is one of important environmental stress for plant. Drought has deleterious effect to plant growth including maize (Zea mays L.) such as vegetative and/or reproductive growth, root extension, photosynthesis efficiency, flowering, anthesis-silking interval (ASI), fertilization, and grain filling. In this study, we screened drought tolerant maize in 21 cultivars from different sources, sixteen NAM parent lines (B73, CML103, CML228, CML247, CML277, CML322, CML333, CML69, Ki11, Ki3, Ky21, M37W, Mo18w, NC350, Oh43 and Tx303), four Korean hybrids (Cheongdaok, Gangdaok, Kwangpyeongok and Pyeonganok) and one Southeast Asian genotype (DK9955). Drought stress (DS) index was evaluated with leaf rolling score at seedling stage and ASI at silking date. The leaf rolling scoring of CML228, DK9955 and Ki11 were determined 1.28, 1.85, 1.86, respectively. However, M37W, Kwangpyeongok, B73 and NC350 were determined over the 3. ASI analysis revealed that CML228, CML103, Cheongdaok, NC350, B73, CML322, Kwangpyeongok and Ki11 are represented less than 5 days under DS and less than 3 days of difference between DS and well-watered (WW), but CML69, Ki3, Pyeonganok, M37W, Mo18w and Gangdaok were represented more than 10 days under DS and more than 8 days of difference between DS and WW. Multi-Dimensional Scaling (MDS) analysis determined CML228, Ki11, and CML322 were regarded as drought tolerance cultivars. Eventually, Ki11 showed genetic similarity with Korean cultivars by QTL analysis and MDS analysis. Ki11 has a potential for development of drought tolerance maize with Korean cultivars.

Growth Characteristics and Productivity of Single Cross Maize Hybrid for Grain, 'Andaok' (다수성 종실 옥수수 신품종 '안다옥'의 생육특성과 수량성)

  • Son, Beom Young;Baek, Seong Bum;Kim, Jung Tae;Lee, Jin Seok;Ku, Ja Hwan;Kwon, Young Up;Huh, Chang Suk;Park, Jong Yeol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Andaok, a new single cross variety, is a yellow dent maize hybrid (Zea mays L.) developed by the maize breeding team at the National Institute of Crop Science (NICS), RDA in 2011. This hybrid, which has a high yield of grain, was produced by crossing two inbred lines, KS161 and KS162. KS161 is the seed parent and KS162 is the pollen parent of Andaok. Silking date of Andaok is 3 days later than that of the check hybrid, Jangdaok. Plant height of Andaok is longer than that of Jangdaok. Ear numbers per 100 plants of Andaok is more than that of Jangdaok. Ear length of Andaok is shorter than that of Jangdaok. The weight of 100 seeds of Andaok is heavier than that of Jangdaok. It has moderate resistance to southern corn leaf blight (Bipolaris maydis), black streaked dwarf virus (BSDV) and corn borer. It has strong resistance to northern corn leaf blight (Exserohilum turcicum). It has resistance to lodging. Andaok was evaluated for its yield of grain at three locations from 2009 to 2011. The grain yield of Andaok was 7.80 ton/ha. Seed production of Andaok has gone well due to a good match during crossing between the seed parent, KS161, and the pollen parent, KS162, in Yeongwol.