• Title/Summary/Keyword: main rafter

Search Result 13, Processing Time 0.022 seconds

Planning Method of Roof Framing through Inner Building of Changgyeonggung in 19th Century (19세기 창경궁(昌慶宮) 내전(內殿) 전각(殿閣)의 지붕가구(架構) 계획기법(計劃技法)에 관한 연구(硏究))

  • Kim, Ki Deoka;Han, Wook;Kim, Derk Moon
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.2
    • /
    • pp.134-153
    • /
    • 2009
  • This study is to examine closely the frame structure of buildings in the royal palace of Josen dynasty, focused on inner buildings of Changgyeonggung(昌慶宮) which is built in 19th century, through considering the member size of main structure and analyzing the slope of a rafter. The plans of a size on main member are as follows ; firstly, a length of the perimeter column was accorded with Gunggwolji(宮闕誌) and the planning size of interior column was shown to a Chon(a Korean inch, 寸) unit. The slope of long common rafter that is formed between the perimeter and interior columns was grasped with limits of a definite value. This is that the perimeter column is trimmed to a Chon unit, as Yeongchunheon(迎春軒), In the roof frame of Korean traditional timber architecture, the slope of rafter, first of all, is to decide the slope of long common rafter and then to decide a height of ridge piece settled whole height of a building. And it is regulated with position and height of a post so as to set up middle rafter. Especially, the slope of long common rafter, it is not to be decide through scale of a building but through a length of the perimeter column and composition of bracket structure. And in case middle rafter, the process of its slope is to devide the central bay on the side of a building into equality, and then to adjust position and length of a post.

A Study on the Eaves Structure of Korean Jusimpo-type Architecture (한국 주심포식건축의 처마구조에 관한 연구)

  • Yang, Jae-Young
    • Journal of architectural history
    • /
    • v.25 no.3
    • /
    • pp.23-35
    • /
    • 2016
  • The purpose of this study is to classify types of the eaves structure of buildings with the Jusimpo-type structure and to analyze the characteristics of each eaves structure. For this objective, forty buildings were selected and investigated. The results of analysis are summarized as follows. First, the main members of framework which handle a load burden on the long-rafter(長椽) are classified as the Jusim-dori(柱心道里) and the Oemok-dori(外目道里). Based on the method of handling a load, the eaves structure is classified into three types; the Jusim-processing-type(柱心中心形), the Oemok-processing-type(外目中 心形), and the Oemok-processing-variant-type(外目中心變異形). The Jusim-processing-type is the set where the internal length of a long-rafter is longer than the length of the eaves on the basis of the center of a column. The Oemok-processing-type is the set where the external length of a long-rafter is longer than the internal length of it. And the Oemok-processing-variant-type is the set where the internal length of a long-rafter is longer than the external length of it, but it is shorter than the length of the eaves which includes the extruded length of a Buyeon(浮椽). Second, the Jusim-processing-type had been generally adopted in the Jusimpo-type structure of the Goryeo Dynasty. But since the 17th century, the Oemok-processing-type had the highest application rate. Third, the change from the Jusimdori-processing-structure to the Oemokdori-processing-structure means that the long-rafter is moved to the direction of outside of the building, and thus the Jung-dori(中道里) is gradually moved to the column center. And, the change of the eaves with the Jusimpo-type structure was not a process for increasing the length of the eaves but a process for adopting the advantages of the Dapo-type structure by changing the arrangement of purlin. Fourth, the change from the Jusimpo-type structure to the Dapo-type structure could be understood as a process for moving the main point for handling a load from the Jusim-dori to the Oemok-dori.

A Study on the Structural Safety Analysis for Vinyl House at Wind Load (비닐하우스의 풍하중 구조안전성 검토에 관한 연구)

  • Paik, Shinwon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.72-77
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used to grow fruits, flowers and vegetables in the countryside. Due to climate change, vinyl houses are often destroyed by strong winds or typhoons in summer. Many farmers suffer great economic damage from the collapse of vinyl houses. So it is very important to build a safe vinyl house and find a method to withstand this heavy wind load. In this study, a structural analysis was performed on four types of vinyl houses(10-single-4, 10-single-6, 10-single-7, 10-single-10). In addition, axial force and flexural moment are obtained from the structural analysis of four types of vinyl house. For these four types of vinyl house, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of structural analysis for four types of vinyl house showed that the vinyl house structure constructed as a standard was a very dangerous structure. Therefore, it is necessary to devise diverse methods in order to make vinyl houses structurally safe for heavy wind load in the future. Also a variety of manual development is needed to prevent the collapse of vinyl houses at heavy wind load.

A Study on the Structural Safety Analysis for Vinyl House at Snow Load (비닐하우스의 적설하중 구조안전성 검토에 관한 연구)

  • Paik, Shinwon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.34-39
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used in the countryside to grow vegetables. These vinyl houses have occasionally been collapsed due to heavy snowfall in winter. Many farmers get a lot of economical damages, if vinyl houses are collapsed. So it is most important to built a safe vinyl house that can withstand heavy snowfall. In this study, a structural analysis was performed on three types of vinyl houses(07-single-01, 10-single-04, 12-single-01). In addition, the structural analysis of the three types of vinyl houses provided axial forces, flexural moment, and combined stress. For these three types of vinyl houses, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of increasing the design snow load by 15 percent and 30 percent showed that the vinyl house structure constructed as a standard for vinyl house was a more dangerous structure. Therefore, it is necessary to revise regulations such as increasing the thickness of rafters or widening the gap in order to make vinyl houses structurally safe for heavy snowfall in the future, and to devise diverse methods to make vinyl houses that are structurally safe.

The Optimum Specification of Pipes in Rain-Sheltering Greenhouse with Roof Vents for Large-Grain Grapevine Cultivation (대립계 포도 천창개폐형 비가림하우스의 최적 파이프 규격)

  • Yum, Sung-Hyun;Yun, Nam-Gyu;Kim, Gyeong-Won;Lee, Sung-Hyoun;Cho, Yong-Ho;Park, Seo-Jun;Park, Mun-Kyun
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • This study was carried out to: (1) analyze structural stability of representative rain-sheltering greenhouses for large-grain grapevine cultivation with widths of 3.6 m and 5 m in case of using the existing pipe for agriculture; (2) present the optimum specification of pipes in the greenhouse with a width of 5 m under the condition of using the pipe of which ultimate strength has been above $400N{\cdot}mm^{-2}$; (3) evaluate stability and also present the optimum specification of pipes as eaves height was augmented. The above analyses were done for greenhouses with roof vents and also with a main-column interval of 3 m and a rafter interval of 60 cm. First, the existing 3.6 m greenhouse with a rafter of ${\Phi}25.4{\times}1.5t@600$ was stable far a snow-depth of 35 cm but unstable for a wind velocity of $35m{\cdot}s^{-1}$. Meanwhile the existing 5 m greenhouse with the same rafter was not stable for a wind velocity of $335m{\cdot}s^{-1}$ as well as a snow-depth of 35 cm. This meant that existing greenhouses had to be reinforced to secure stability. Second, the specification of pipes, especially rafter, could be classified as two cases. One had a structural stability at a safe wind velocity of $35m{\cdot}s^{-1}$ and a safe snow-depth of 40 cm for which stability the rafter had to be ${\Phi}31.8{\times}1.5t@600$, and the other had a stability at $30m{\cdot}s^{-1}-35cm$ at the specification of rafter ${\Phi}25.4{\times}1.5t@600$. Finally, eaves height had a significant effect on safe wind velocity. But it had little influence on safe snow-depth. The results showed that the specification of side-wall pipes had to be reinforced for the safe side velocity accord-ing to the increment of eaves height and similarly the specification of fore-end post far the safe fore-end velocity.

Sustainable Elements in Transformation of Dwelling Space of Urban Traditional Houses in Cheongju City of Korea (청주 도시한옥 주공간의 변용에 나타난 지속적 요소에 관한 연구)

  • Min, Sae-Rom;Kim, Tai-Young
    • Journal of the Korean housing association
    • /
    • v.22 no.5
    • /
    • pp.71-80
    • /
    • 2011
  • The purpose of this study is to investigate the present status of dwelling spaces and deduct sustainable elements in transformation of them by comparing the restored drawings with the surveyed drawings focused on traditional houses that exist in the urban area of cheongju city in Korea. In alteration and extension of these traditional houses, scale of a private room became larger as it has been connected and expanded, the exterior main hall (Daecheong) became the interior living room, and the conventional kitchen was westernized and changed from K type to DK or LDK type. The toilet located at outside was installed by the attached aisle (Toetgan) inside and the existing room. The extension was completed with equipments, storage space, and rental accommodation. The conservative and sustainable elements in the various transformation of them are as follows. Firstly, it was to maintain 3 rooms such as main room (anbang)-main hall (daecheong)-detached room (gunnunbang). Secondly, it was to sustain the circulation of kitchen and arrangement of the - type worktable even though it was westernized. Thirdly, extension of storage space was completed less than 600 mm within the eaves. Although there were functionally and structurally many changes in 18 houses, 4 houses had maintained wooden floor of main hall, 5 houses long planked wooden floor of the attached aisle, and 12 houses rafter ceiling of the main hall and the attached aisle.

A Study for the Expression of Korean Tradition in Interior Design-Focus on Korean restaurant- (실내디자인의 한국전술표현에 관한 연구-한식당을 중심으로-)

  • 김형대
    • Korean Institute of Interior Design Journal
    • /
    • no.6
    • /
    • pp.15-20
    • /
    • 1995
  • In this paper, a strategy for utilizing the Korean tradi-tional spaces and interior design elements in inner space in order to express Korean-style interior design has been studied. Characteristics of Korean tradition was gathered from literatures in two categories; space and el-ements. Space again has been studied in detail in the area of split, continuity, hierarchy, elasticity, dynamics. And study of elements includes floor, wall, ceiling, dan-chung, lattice, laytiles on a roof, rafter, extended eaves, the line of eaves. 30 Korean restaurants were selected, analysed and compared with literature review. Based on the compari-son, a strategy for proper expression and utilization of Korean tradition is suggested. In the process of compari-son, current status of implementation and problems were found. Traditional elements are used in about 50% of Korean restaurants located in hotels, and 25% of those located in department stores. With the survey and other professional's opinions, an implementation plan is suggest-ed as follows; 1. Succession design method of tradition should use main-ly amelioration method and use copy and partly abstraction method. 2. Expression of tradition has to include all of space, ele-ments, and decoration. In space structure, Korean tra-dition space structure must be applied. 3. In order to design with feeling of Korean tradition, various different Korean elements have to be used. 4. In order to express high quality design, high-quality elements has to be used.

  • PDF

Field Technique of Non-Educated Constructors in Timber Structure of Korean-Style Secondary Station(Gong-So) -Focused on the Sin-Sung and Su-Bun Secondary Stations- (한옥 공소의 목구조 방식에 나타난 민간 기술자의 현장기법 -천주교 신성공소와 장수천주교회 수분공소를 중심으로-)

  • Park, Kwang-Hyun;Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • This paper is aimed to clarify field technique of non-educated constructors in timber structure of korean-style secondary station(Gong-So) on the annex of catholic church. The main object of this study is Sin-Sung and Su-Bun secondary stations which post-lintel structure was 2high columns(Go-Ju) 5beams(Ryang) in Jeon-Buk area of Korea. We reached the following conclusion. Firstly, these secondary stations are required a lots of space for number of persons with the introduction of basilica plane. These plans have different intervals in the layout. Secondly, they constructed the holy space by using high columns(Nae-Jin-Go-Ju). The former problems of plan layout are sloved by reinforcement and replacement eaves and rafter of logitudinal. Thirdly, the elements showed the natural feature such as irregular wooden floor, arch-type head pentrating tie and a ceiling. In the end, we knew that non-educated constructor had found a way in the problem for accepting unreasonable work.

Characteristics of Uplift Capacity of House Pipe Foundation according to Foundation Types and Soil Conditions (기초형식 및 지반조건에 따른 하우스파이프기초의 인발저항력 특성)

  • Song, ChangSeob;Jang, UngHee;Choi, DookHo;Kim, JungChul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.117-126
    • /
    • 2020
  • The area of facility horticulture in Korea is increasing rapidly, the single-span pipe house which uses galvanized steel pipe as the main rafters occupies 78.7% of the facility area. Lightweight structures such as the single-span pipe house are vulnerable to meteorological disasters such as strong winds, economic losses of the state, local governments and farmers are continuing as construction does not meet the design standards. In order to minimize economic losses in the horticultural specialty facilities sector, the Rural Development Administration has been operating the horticultural disaster resilient standard for horticultural specialty facilities since April 2007. The only standard for the pipe connector is the disaster resilient standard, there is no standard for the uplift capacity of the house pipe foundation and the research on it is also insufficient. The purpose of this study is to investigate the characteristics of uplift capacity according to the foundation type, compaction ratio and embedded depth through soil box test. The results of the maximum uplift capacity according to the type, compaction ratio and embedded depth can be used as the basic data for the basic design of the pipe house conforming to the disaster resilient standard. Due to the limitation of soil box test, it may be different from the behavior of pipe house installed on site. In the future, the field test and the actual pipe house should be made and supplemented by comparing this result with the field test values.

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.