• Title/Summary/Keyword: main control valve

Search Result 158, Processing Time 0.023 seconds

Development and Validation of Wheel Loader Simulation Model (휠로더 시뮬레이션 모델의 개발과 검증)

  • Oh, Kwangseok;Yun, Seungjae;Kim, Hakgu;Ko, Kyungeun;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.601-607
    • /
    • 2013
  • This paper presents the development and validation of a wheel loader simulation model. The objective of doing so is to evaluate the performance of the wheel loader and improve its overall performance using Matlab/Simulink. The wheel loader simulation model consists of 4 parts: mechanical/hydraulic powertrain model and vehicle/working dynamic model. An integrated simulation model is required to evaluate and improve the performance of the wheel loader. It is expected that this model will be applied to fuel economizing, improving the pace of operation by using the hybrid system, and the intelligent wheel loader. The performance of the proposed simulation model has been validated by using Matlab/Simulink to compare the driving and the working experimental data.

The Behavior of Chill Layers with Temperature Variation of Shot Sleeve in Aluminum Diecasting Process (알루미늄 다이캐스팅 공정에서 사출 슬리브 온도변화에 따른 파단칠층의 거동)

  • Park, Jin-Young;Kim, Eok-Soo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.168-172
    • /
    • 2005
  • In this study, the effects of chill layers occurred in shot sleeve on the molten metal filling were analyzed through computer simulation and the behavior of chill layers with temperature variation of shot sleeve set from 200 to $280^{\circ}C$ was also investigated. The simulation results showed the chill layers set in the in-gates during the injection process change the main filling direction and cause turbulent flow pattern, resulting in porosities inside the castings. The amount of chill layers with the increasing temperature of shot sleeve was considerably reduced. And particularly, at the setting temperature of $280^{\circ}C$ by heat control unit, the big reduction in chill layers, excellent trimmed surface and the highest densification were achieved, suggesting that as the optimal sleeve condition in diecasting, especially for the highly complex parts like valve body.

A Study on the Development of an Energy Saving Unit for a Hydraulic Elevator (유압식 엘리베이터용 에너지 저감장치의 개발에 관한 연구)

  • Cho, Ihn-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2106-2112
    • /
    • 2013
  • In a traditional hydraulic elevator, elevator car is descended by down control valve, and the oil hydraulic energy must be lost during the descending stroke. In this paper, hybrid type energy saving unit for a hydraulic elevator is researched to save the hydraulic energy which is lost during the descending stroke. The energy is stored as converted electrical energy, and the saved energy is reused as the auxiliary power for the ascending stroke of elevator car or the main power of other parts. The results show that the output characteristics are stable and good and the research is successful and useful to reuse the saved energy during the descending stroke of elevator car.

Comparison of Dynamic Operation Performance of LNG Reliquefaction Processes based on Reverse Brayton Cycle and Claude Cycle (Reverse Brayton 사이클과 Claude 사이클 기반 LNG 재액화 공정의 동특성 운전성능 비교)

  • Shin, Young-Gy;Seo, Jung-A;Lee, Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.775-780
    • /
    • 2008
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

Comparison of Operation Performance of LNG Reliquefaction Process according to Reverse Brayton Cycle and Claude Cycle

  • Shin, Young-Gy;Seo, Jung-A;Lee, Yoon-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.135-140
    • /
    • 2009
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

A Study on a Precision Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on Fuzzy Control (퍼지제어를 이용한 공작 기계용 오일 쿨러의 핫가스 바이패스방식 정밀 온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. This paper deals with design and implementation method of fuzzy controller for obtaining precise temperature characteristic of HB oil cooler system in machine tools. The opening angle of an electronic expansion valve are controlled to keep reference value and room temperature of temperature at oil outlet. Especially, the fuzzy controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.22^{\circ}C$.

A Comparison between Korean and English News Editorials with Focus on U.S.-North Korea Summit Based on Expressive Language (언어표현 기반의 북미 정상회담에 관한 한미 신문사설의 비교)

  • Noh, Bokyung;Ban, Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.125-130
    • /
    • 2019
  • This research is about alternative measure of main components for sprinkler system like automatic wet pipe sprinkler system, dry pipe sprinkler system, pre-action sprinkler system, vacuum sprinkler system, deluge sprinkler system, and so on. By replacing the alarm check valve, dry valve, pre-operated valve, and deluge open valve with a solenoid valve, it be can be simplifed the various processes of the manufacturing process into one process, it creates an environment in which one standardized product can be produced simultaneously on a single machine. Therefore, it could improve the price competitiveness of products, reduce the maintenance cost, and help the adaptability of new sprinkler systems in the future. There is a benefit when it comes to apply to sprinkler system. Only replace the valve which is used to control primary and secondary valve such as wet, dry, pre operated, vacuum, deluge system valve. Other components such as retarding chambers, automatic air compressors, accelerators or adjusters, supervisory panels, vacuum pumps, and manual starters can be used as they are, so they can be easily applied to existing sprinkler system. It is needed to legal and institutional study for solenoid valve applied sprinkler system to commercialize.

Modeling & Simulation of a Hydraulic Servo Actuator Cushion for Power Plants (발전소용 유압 서보액추에이터의 쿠션 모델링 및 시뮬레이션)

  • Lee, YongBum;Yoon, Young Hwan
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Turbine power control devices at a nuclear / thermoelectric power plant lead to failure by creating mechanical shocks and strong vibrations that are due to the strong elasticity of a spring and the inertia of the valve face during its rapid movement to block steam. To ensure durability of the turbine power control device, which is the main component in the power plant, it is necessary to develop a device that can prevent such vibrations. In this study, a cushion mechanism is added to the head of the hydraulic servo actuator, which is a turbine power control device. Moreover, the cushion mechanism, which includes various modifies shapes and orifices is investigated dynamically through modeling and simulations.

Noise Control of an Air Intake system for a Four-Cylinder Engine (4기통 엔진의 흡기계 소음제어)

  • 김태정;홍상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.77-83
    • /
    • 1996
  • Noise control process of an air intake system for a four-cylinder automotive engine is described. The objective of the process is reduction of induction noise without losing engine performance and changing package layout. The theory and feasibility for noise control elements are also discussed. In general, four-cylinder engines generate a lower frequency induction noise around 80-150 Hz (2400-4500 rpm) and firing frequency, valve impact noise are the main sources. In this paper, the most problematic noise source is identified first and better position of air inlet is selected between inside-fender and out-of-fender layouts. Secondly, the possible noise control approach and CAE analysis results are compared to those from speaker excitation tests. Finally, the effect of the controlled intake system after the installation to an automobile is presented.

  • PDF

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.