• Title/Summary/Keyword: magnified image

Search Result 74, Processing Time 0.027 seconds

Enhanced Image Magnification by Using Extrapolation (외삽법을 이용한 개선된 영상확대기법)

  • Je Sung-Kwan;Kim Kwang-Back;Cho Jae-Hyun;Lee Jin-Young;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.825-828
    • /
    • 2006
  • The most commonly used techniques for image magnification are interpolation based. However, the magnified images produced by this technique often appear blocking and blurring phenomenon when the image is enlarged. In this paper, we enhanced image magnification algorithm using edge information. The proposed algorithm not used interpolation based but by using sub-band of input image in extrapolation. According to mapping relationship in pyramid, we calculated up-band information to magnify. In experiments, the proposed model shows solved the problem of image loss like the blocking and blurring phenomenon. As the result, it is faster and higher resolution than traditional magnification algorithms.

  • PDF

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo;Lee, Sin Yong;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.

CCD Scanning type MTF Measuring System for Microlens Arrays (CCD를 이용한 미세렌즈의 MTF 측정)

  • 이윤우;조현모;이인원;박태호;윤성균;서형원
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.364-371
    • /
    • 1994
  • Real-time MTF measuring system for testing microlens arrays with a linear CCD array is developed. The spread function of slit image that is relayed and magnified by a microscopic object lens can be measured at several times in a second. The signal uniformity and MTF of CCD is also calibrated. The experimental result of micro lens arrays developed for contact image sensor is presented.sented.

  • PDF

A Study of Using the Magnifying Lens to Detect the Detailed 3D Data in the Stereo Vision (양안입체시에서 3차원 정밀 데이터를 얻기 위한 확대경 사용에 관한 연구)

  • Cha, Kuk-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1296-1303
    • /
    • 2006
  • The range-based method is easy to get the 3D data in detail, but the image-based is not. In this paper, I suggests the new approach to get the 3D data in detail from the magnified stereo image. Main idea is using the magnifying lens. The magnifying lens not only magnifies the object but also increases the depth resolution. The relation between the amplification of the disparity and the increase of the depth resolution is verified mathematically and the method to improve the original 3D data is suggested.

  • PDF

From Exoscope into the Next Generation

  • Nishiyama, Kenichi
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.3
    • /
    • pp.289-293
    • /
    • 2017
  • An exoscope, high-definition video telescope operating monitor system to perform microsurgery has recently been proposed an alternative to the operating microscope. It enables surgeons to complete the operation assistance by visualizing magnified images on a display. The strong points of exoscope are the wide field of view and deep focus. It minimized the need for repositioning and refocusing during the procedure. On the other hand, limitation of magnifying object was an emphasizing weak point. The procedures are performed under 2D motion images with a visual perception through dynamic cue and stereoscopically viewing corresponding to the motion parallax. Nevertheless, stereopsis is required to improve hand and eye coordination for high precision works. Consequently novel 3D high-definition operating scopes with various mechanical designs have been developed according to recent high-tech innovations in a digital surgical technology. It will set the stage for the next generation in digital image based neurosurgery.

Enhanced Image Magnification Using Edge Information (에지정보를 이용한 개선된 영상확대기법)

  • Je, Sung-Kwan;Cho, Jae-Hyun;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2343-2348
    • /
    • 2006
  • Image magnification is among the basic image processing operations. The most commonly used technique for image magnification are based on interpolation method(such as nearest neighbor, bilinear and cubic interpolation). However, the magnified images produced by the techniques that often appear a variety of undesirable image artifacts such as 'blocking' and 'blurring' or too takes the processing time into the several processing for image magnification. In this paper, we propose image magnification method which uses input image's sub-band information such as edge information to enhance the image magnification method. We use the whole image and not use the one's neighborhood pixels to detect the edge information of the image that isn't occurred the blocking phenomenon. And then we emphasized edge information to remove the blurring phenomenon which incited of edge information. Our method, which improves the performance of the traditional image magnification methods in the processing time, is presented. Experiment results show that the proposed method solves the drawbacks of the image magnification such as blocking and blurring phenomenon, and has a higher PSNR and Correlation than the traditional methods.

A COMPARATIVE STUDY OF RADIOGRAPHIC LANDMARKS OF T.M.J. BY VARIOUS TECHNIQUES (악관절이 방사선상에 의한 비교 연구)

  • Lee Yoo Dong
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1974
  • The author has studied roentgenographic images of temporomandibular articulation using various conventional roentgenographies. The roentgenographic images have obtained by application of the contrast media on the glenoid fossa and condylar head in a human dry skull. Comparing the various roentgenograms by Modified Transcranial projection, A-P T.M. articulation projection, Reverse Towne projection, Mayer projection and Bregma-Menton projection. The author has drawn following results. 1. The sharp radiogaphic details were obtained by all technics used except the Bregma-Menton projection, which seemed to be impractical to the study of T.M.J. because of to be shortened the image of condylar head. 2. The best image of the condyle-fossa relationship was appeared by Modified Transcranial projection and better image was acquired by Orbito-Ramus projection, but there were all inferior in Reverse Towne projection, Mayer projection and Bregma-Menton projection. 3. In all of the above techniques, the radiographic images of condylar head were clear and were appeared to be the convex type in Modified Transcranial projection, the angled type in Orbito-Ramus and Reverse Towne projection, the flat type in Mayer projection and the distorted angled type in Bregma-Menton projection. 4. The radiographic image of condylar head was shortened in Bregma-Menton projection only and was magnified somewhat in other projection.

  • PDF

Switching Filter based on Noise Estimation in Random Value Impulse Noise Environments (랜덤 임펄스 잡음 환경에서 잡음추정에 기반한 스위칭 필터)

  • Bong-Won, Cheon;Nam-Ho, Kim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.54-61
    • /
    • 2023
  • With the development of IoT technologies and artificial intelligent, diverse digital image equipments are being used in industrial sites. Because image data can be easily damaged by noise while it's obtained with a camera or a sensor and the damaged image has a bad effect on the process of image processing, noise removal is being demanded as preprocessing. In this thesis, for the restoration of image damaged by the noise of random impulse, a switching filter algorithm based on noise estimation was suggested. With the proposed algorithm, noise estimation and error distraction were carried out according to the similarity of the pixel values in the local mask of the image, and a filter was chosen and switched depending on the ratio of noise existing in the local mask. Simulations were conducted to analyze the noise removal performance of the proposed algorithm, and as a result of magnified image and PSNR comparison, it showed superior performance compared to the existing method.

Image Magnification Using Median Filter and Spatial Variation (메디안 필터와 공간 변화량을 이용한 영상 확대)

  • Kwak, Nae-Joung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.72-80
    • /
    • 2007
  • Image magnification is the estimation of a few pixel in images with high quality from a pixel of an image with low resolution and there have been studied many techniques to make images with high quality. In this paper, we propose an image interpolation method using median filter and spatial information. The proposed method makes an interpolating pixel using an average value of a median filtered value and an average value of two pixels correlated with an interpolating pixel tightly. Also we make the magnified image with improved quality to add the directional information of surrounding pixels and the characteristic of ones using average value and max value of spatial variation. We evaluate the performance using PSNR in the quality of enlarged image comparing the proposed method with existing methods. The results show the proposed method improves PSNR than the existing methods and make images preserving the characteristic of original imges.

Adaptive Weight Filter Algorithm for Restoration Images Corrupted by High Density Impulse Noise (고밀도 임펄스 잡음에 훼손된 영상 복원을 위한 적응형 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1483-1489
    • /
    • 2022
  • Recently, due to the influence of the 4th industrial revolution and the development of communication media, various digital video equipment are being used in industrial fields. Image data is easily damaged by noise in the process of acquiring and transmitting and receiving from the camera and sensor, and since the damaged image has a great effect on the processing of the system, noise removal is essential. In this paper, a weight filter algorithm using a weight graph is proposed to restoration images damaged by high-density impulse noise. The proposed algorithm obtains a weight graph using pixel values inside the filtering mask of the image, and restores the image by applying the final weight to the filtering mask. Simulation was conducted to analyze the noise removal performance of the proposed algorithm, and the magnified image and PSNR were used to compare with the existing method. The resulting image of the proposed algorithm showed excellent performance by removing high-density impulse noise.