• Title/Summary/Keyword: magnetite-series

Search Result 50, Processing Time 0.027 seconds

The Nature of Gold Mineralization in the Archean Sunrise Dam Gold Deposit in Western Australia (호주 Sunrise Dam 광상의 금 광화작용)

  • Sung, Yoo-Hyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.429-441
    • /
    • 2010
  • The Sunrise Dam gold deposit is located approximately 850 km ENE of Perth, in the eastern part of the Yilgam Craton, Western Australia. The mine has produced approximately 153 t of Au at an average grade of 4.2 g/t, which stands for the most significant gold discoveries during the last decade in Western Australia. The deposit occurs in the Laverton Tectonic Zone corresponding to the corridor of structural complexity in the Laverton greenstone belt, and characterized by tight folding and thrusting. The mine stratigraphy consists of a complexly deformed and altered volcaniclastic and volcanic rocks. These have been overlain by a turbidite sequence containing generally well-sorted siltstones, sandstones and magnetite-rich shales, which are consistently fining upwards. These sequences have been intruded by quartz diorite, ultramafic dikes, and rhyodacite porphyry (Archean), and lamprophyre dikes (Palaeoproterozoic). These rocks constitute the asymmetric NNE-trending Spartan anticline with north-plunging thrust duplication of the BIF unit. The deposit is located on the western limb of this structure. Transported, fluvial-lacustrine and aeolean sediments lie unconformably over the deposit showing significant variation in relief. Gold mineralization occurs intermittently along a NE-trending corridor of ca. 4.5 km length. The 20 currently defined orebodies are centered on a series of parallel, gently-dipping ($\sim30^{\circ}$) and NESW trending shear zones with a thrust-duplex architecture and high-strain characteristics. The paragenetic sequence of the Sunrise Dam deposit can be divided into five hydrothermal stages ($D_1$, $D_2$, $D_3$, $D_4a$, $D_4b$), which are supported by distinctive features of the mineralogical assemblages. Among them, the D4a stage is the dominant episode of Au deposition, followed by the $D_4b$ stage, which is characterized by more diverse ore mineralogy including base metal sulfides, sulfosalts, and telluride minerals. The $D_4a$ stage contains higher proportions of microscopic free gold (48%) than D4b stage (12%), and pyrite is the principal host for native gold (electrum) followed by tetrahedrite-group minerals in both stages.

Characterization of Surface Deterioration for Stone Property around the Hyeonleung (Royal Tomb of Joseon Dynasty) in Guri, Korea (구리 현릉 능상석물의 표면 손상특성 평가)

  • Oh, Jeong Hyun;Kim, Sa Dug;Lee, Chan Hee;Lee, Tae Jong
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.353-364
    • /
    • 2016
  • The materials of sculptured stone property around the Hyeonleung Royal Tomb in Guri consist mainly of high weathered of granitic rocks with magnetite-series. Deterioration characteristics occurred highly with microorganism, soil inflow and black contaminants at the burial mound zone. As a result of deterioration evaluation, stone surface around the burial mound zone show serious comprehensive damage of soil inflow (50.5%) and lichen coverage (47.6%) which are the major damaging factors, and there are about 8.6% of biological growth noticeably in the north side. Surface contaminants and the discoloration had the complex causes. Gypsum occurred between joints of stones and the major contaminant type, darkening which was analyzed organic bodies caused discoloration. From result of ultrasonic velocity measurements, there are mean value of 2,195 m/s with highly weathered (HW) grade. Most of the stone properties showed 4 to 5 weathered grade. Therefore, it turned out that sculpture stone properties require conservation treatments. To remove soil accelerating damage factors and lichen occupying high percents, the cleaning process is necessary and consolidation, rejoining and filling are needed as well. Also, consideration on removing conservation materials containing Ca and e fflorescence is required and retreatments need to be considered.

Morphology and petrology of Jisagae columnar joint on the Daepodong basalt in Jeju Island, Korea (제주도 대포동현무암에 발달한 지삿개 주상절리의 형태학 및 암석학적 연구)

  • Koh Jeong-Seon;Yun Sung-Hyo;Hong Hyun-Chu
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.212-225
    • /
    • 2005
  • This study has been designed to elucidate the morphology of Jisagae columnar joints and the petrography and petrochemistry of Daepodong basalt in Jeju Island, distributed along the 3.5 km-long coast from Seongcheonpo to Weolpyeongdong. Colonnade of the Jisagae columnar joint typically occurs within the upper part of a flow and consists of relatively well-formed basalt columns. Most columns are straight with parallel sides and diameters from 100 cm to 205 cm, $130\~139\;cm$ in maximum. Length of the columns extends up to 20 m. Most columns tend to have 6 or 5 sides but sometimes they have as few as $3\~4$ or as many as 7 or 8 sides. The Daepodong basalt consists of plagioclase, olivine, orthopyroxene, clinopyroxene, ilmenite and magnetite. Plagioclase is labradorite, clinopyroxene is augite, orthopyroxene is bronzite and olivine is chrysolite and hyalosiderite. The Daepodong basalt shows porphyritic texture with matrix of mainly intersetal texture. The Daepodong basalt is plotted into alkali rock series on the TAS diagram. The tectonic setting of the Daepodong basalt represents within plate environment.

Petrology of the Volcanic Rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island (제주도 한라산 백록담 분화구 일대 화산암류의 암석학적 연구)

  • 고정선;윤성효;강순석
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The Paekrogdam summit crater area, Mt. Halla, Jeju Island, Korea, composed of Paekrogdam trachyte, Paekrogdam trachybasalt, and Manseidongsan conglomerate in ascending order. Joint systems show concentric and radial patterns around the summit crate wall. The Paekrogdam crater is a summit crater lake which erupted the tuffs, scorias and lava flows of Paekrogdam trachybasalt after the emplaceent of Paekrogdam trachyte dome. SiO$_2$ contents of mafic and felsic lavas are respectively, 48.0∼53.7 wt.% and 60.7∼67.4 wt.%, reflecting bimodal volcanism. And lavas with SiO$_2$ between 53.7 wt.% and 60.7 wt.% are not found. According to TAS diagram and K$_2$O-Na$_2$O diagram, the volcanic rocks belong to the normal alkaline rock series of alkali basalt-trachybasalt-basaltic trachyandesite and trachyte association. Oxide vs. MgO diagrams represent that the mafic lavas fractionated with crystallization of olivine, clinopyroxene, magnetite and ilmenite and felsic trachyte of plagioclase and apatite. The characteristics of trace elements and REEs shows that primary magma for the trachybasalt magma would have been derived from partial melting of garnet peridotite mantle. In the discrimination diagrams, the volcanic rocks are plotted at the region of within plate basalt (WPB).

Spatio-Temporal Variation of Polymetallic Mineralization in the Wooseok Deposit (우석광상 다금속 광화작용의 시공간적 특성변화)

  • Im, Heonkyung;Shin, Dongbok;Jeong, Junyeong;Lee, Moontaek
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.493-507
    • /
    • 2018
  • The Wooseok deposit in Jecheon belongs to the Hwanggangri Mineralized Distict of the northeastern Ogcheon Metamorphic Belt. Its geology consists mostly of limestone of the Choseon Supergroup and the Cretaceous Muamsa granite intruded at the eastern area of the deposit. The deposit shows vertical occurrence of skarn and hydrothermal vein ores with W-Mo-Fe and Cu-Pb-Zn mineralization and skarn is developed only at lower levels of the deposit. Skarn minerals are replaced or cut by ore minerals in paragenetic sequence of magnetite-hematite, molybdenite-scheelite-wollframite, and higher abundances of pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. Garnet has chemical compositions of $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$, corresponding to andradite series, and pyroxene compositions are $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$, prevailing in diopside compositions, both of which suggest oxidized conditions of skarnization. On the FeS-MnS-CdS ternary diagram, FeS contents of sphalerite in vein ores decrease with increasing MnS contents from bottom to top levels, possibly relating to W mineralization in deep and Pb-Zn mineralization in shallow level. Sulfur isotope values of sulfide minerals range from 5.1 to 6.8‰, reflecting magmatic sulfur affected by host rocks. W-Mo skarn and Pb-Zn vein mineralization in the Wooseok deposit were established by spatio-temporal variation of decreasing temperature and oxygen fugacity with increasing sulfur fugacity from bottom to top levels.

Conservation Treatment Based on Material Characteristics, Provenance Presumption and Deterioration Diagnosis of the Seven-Storied Jungwon Tappyeongri Stone Pagoda, Chungju, Korea (중원탑평리칠층석탑의 재질특성과 산지추정 및 손상도 진단을 통한 보존처리)

  • Lee, Chan Hee;Kim, Moo Yeon;Jo, Young Hoon;Lee, Myeong Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.4-25
    • /
    • 2010
  • This study was carried out on scientific conservation treatment based on material characteristics, provenance interpretation, and deterioration diagnosis for seven-storied Jungwon Tappyeongri stone pagoda in Chungju. As a result, main rock of the pagoda is biotite granite with magnetite-series (average $5.86{\times}10^{-3}$ SI unit), containing partly basic xenolith, pegmatite veinlet and feldspar phenocryst. As a result of the provenance presumption of the host rock, a rock around the Songgang stream was identified the same origin. Therefore the rock is appropriate for materials of the pagoda restoration. The deterioration assessment suggested that the pagoda was seriously exfoliated (2.7 to 5.5%), discolored (39.8 to 58.9), and contaminated with repair materials (3.5 to 9.4%), and bioorganisms (19.3 to 24.4%). Accordingly, conservation treatment was carried out based on preliminary investigation for stable conservation of the pagoda. Overall processes were sequentially proceeded by restoration of the replacement stone, cleaning, joining and consolidation. This study sets up an integrated conservation system from preliminary investigation to conservation treatment of the pagoda. Also, the study will contribute for establishing the future-oriented customized conservation treatment.

Precise Deterioration Diagnosis and Restoration Stone Suggestion of Jungdong and Banjukdong Stone Aquariums in Gongju, Korea (공주 중동 및 반죽동 석조의 정밀 손상도 진단과 복원석재 제안)

  • Jo, Young Hoon;Lee, Myeong Seong;Choi, Gi Eun;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.92-111
    • /
    • 2011
  • This study focus on the restoration stone selection of break-out part based on material characteristics analysis and the conservational safety diagnosis using various nondestructive techniques for Jungdong and Banjukdong Stone Auariums. As a result, the original rocks of the stone aquariums body are porphyritic granodiorite with magnetite-series having igneous lineation, microcline phenocryst, veinlet and basic xenolith. As a result of the provenance presumption of the host rock, a rock around Gamgokri area in Nonsan City was identified the genetically same rock. Therefore, the rock is appropriate for restoration materials of the break-out part. The deterioration assessment showed that the stone aquariums were highly serious scaling, scale off and blackening. Particularly, the front face of Banjukdong stone aquarium needs reinforcement of structural crack (760mm) caused from igneous lineation of biotite. Blackening contaminants on the stone aquariums surface occurred by combining iron oxide, manganese oxide and clay mineral. Also, major factors of efflorescence contaminants were identified as calcite (Jungdong stone aquariums) and gypsum (Banjukdong stone aquariums). The physical characteristics of stone aquariums appeared that the original and new stone is third (moderately weathered) and second grade (slightly weathered), respectively. This study sets up an integrated conservation system from material analysis to restoration stone selection and conservational safety diagnosis of Jungdong and Banjukdong stone aquariums.

Characteristics and Stratigraphic Implications of Granitic Rock Fragments in the Pyroclastic Rocks, SE Jinhae, Korea (진해시 남동부 화성쇄설암 내 화강암편의 특징과 층서적 의미)

  • Cho, Hyeong-Seong;Kim, Jong-Sun;Lee, Jeong-Hwan;Jeong, Jong-Ok;Son, Moon;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.116-128
    • /
    • 2007
  • Detailed geological mapping, petrographic study, analyses of geochemistry and magnetic susceptibility, and K-Ar dating were carried out in order to determine the origin, age, and stratigraphic implications of granitic rock fragments in the pyroclastic rocks, SE Jinhae city, southern part of the Gyeongsang Basin. As a result, it was found that the area is composed of volcanics and tuffaceous sediments of the Yucheon Group, Bulguksa granites, pyroclastics bearing granitic rock fragments, $basalt{\sim}basaltic$ andesite, and rhyolite in ascending stratigraphic order. The granitic rock fragments in the pyroclastic rocks are divided into granodiorite and biotite granite, which have approximately the same characteristics as the granodiorite and the biotite granite of the Bulguksa granites, respectively, in and around the study area including color, grain size, mineral composition, texture (perthitic and micrographic textures), intensity of magnetic susceptibility (magnetite series), and geochemical features (calc-alkaline series and REE pattern). This leads to the conclusion that the rock fragments originated from the late Cretaceous Bulguksa granites abundantly distributed in and around the study area, but not from the basement rocks of the Yeongnam massif or the Jurassic granites. Based on relative and absolute ages of various rocks in the study area, the pyroclastics bearing granitic rock fragments are interpreted to have erupted between 52 and 16 Ma, i.e. during the Eocene and early Miocene. These results indicate that the various volcanisms, acidic to basic in composition, occurred after the intrusion of the Bulguksa granites, contrary to the general stratigraphy of the Gyeongsang Basin. Very detailed and cautious mapping together with relative and absolute age determinations are, thus, necessary in order to establish reliable stratigraphy of the Yucheon Group in other areas of the Gyeongsang Basin.

Geochemistry of Granites in the Southern Gimcheon Area of Korea (김천남부에 분포하는 화강암류의 지구화학)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The granites in the southern Gimcheon area can be divided into two parts, marginal hornblende biotite granodiorite (Mgd) and central biotite granodiorite to granite (Cgd). Mgd and Cgd are gray in color and display gradational contact relations and are mainly composed of coarse-grained and medium-grained rocks, respectively. Mgd has more frequent and larger mafic enclaves than Cgd, and the two granites partly show parallel foliation at thire contact with gneisses. From representative samples of the granites, K-Ar biotite ages of 197∼207 Ma were obtained. Considering the blocking temperature of biotite, it is suggested that the emplacement age of the granitic magma was probably late Triassic. The anorthite contents of plagioclases in Mgd display less variation than those of Cgd, indicating that Mgd crystallized within a narrow range of temperatures. In the Al$\_$total/-Mg diagram, the biotites from the granites plot within the subalkaline field, and the smooth slope indicates differentiation from a single magma. All amphiboles from the granites belong to magnesio-hornblende. The linear trends of major oxides, AFM and Ba-Sr-Rb indicate that Mgd and Cgd were fractionally differentiated from a single granitic magma body crystallizing from the margin inwards. The relations of modal (Qz+Af) vs. Op, K$_2$O vs. Na$_2$O, Fe$_2$ $O_3$ vs. FeO, Fe$\^$+3/(Fe$\^$+3/+Fe$\^$+2/) and K/Rb vs. Rb/Sr show that they belong to I-type and magnetite-series granitic rocks developed by the progressive melting products of fixed sources. REE data, normalized to chondrite value, have trends of enriched LREE and depleted HREE together with weakly negative Eu anomalies.

Preliminary Study of Oxidized Au skarn Model in the Geodo Mine Area to Mineral Exploration (광물자원탐사를 위한 거도광산지역의 산화형 스카른 금광상모델 예비연구)

  • Kim, Eui-Jun;Park, Maeng-Eon;Sung, Kyul-Youl
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.289-300
    • /
    • 2009
  • The Geodo mine area, had been developed for Fe and Cu ores since 1963 and abandoned in recent decades, is located in the central part of the Taebaeksan mineralized district. This area comprises of the Jangsan, Myobong, Pungchon, Hwajeol, Dongjeom, and Dumugol Formations in ascending stratigraphic order. These Formations were intruded by the Cretaceous Eopyeong granitoids that appears to produce the Geodo skarn. Their compositions are relatively oxidized quartz monzodiorite to granodiorite (magnetite series, $Fe_2O_3/FeO=0.3{\sim}1.1$). Mineralizations related skarn deposit occur in the Myobong, Pungchon, and Hwajeol Formations. The proximal skarn is zoned from andraditic garnet ($Ad_{44-95}Gr_{1-53}$) predominant adjacent to the Eopyeong granitoids to diopsidic pyroxene ($Hd_{10-100}Di_{0-89}$) predominant away from the one. The differential proportion of garnet and pyroxene is generated by water/rock ratio and their source, such as magmatic and meteoric water. This is useful tool for assessment the overall oxidation state of the entire skarn system. Gold occurs in proximal red to brownish garnet skarn, and genetically associated with Bi- and Te-bearing minerals. Skarn deposit developed in the Geodo mine area is considered as oxidized Au skarn category, based on chemical composition of the Eopyeong granitoids, zonation of skarn, and gold occurrences. Garnet-rich skarn zone will be the main target for exploration of gold in the study area. However, it is needed to the detailed survey on vertical zonation of this area as well as lateral zonation. The result of this survey would provide an important basis for the exploration of the skarn Au deposit in the Geodo mine area.