Preliminary Study of Oxidized Au skarn Model in the Geodo Mine Area to Mineral Exploration

광물자원탐사를 위한 거도광산지역의 산화형 스카른 금광상모델 예비연구

  • Kim, Eui-Jun (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Maeng-Eon (Department of Environmental Geosciences, Pukyong National University) ;
  • Sung, Kyul-Youl (Department of Energy and Resources Engineering, Korea Maritime University)
  • 김의준 (한국지질자원연구원) ;
  • 박맹언 (부경대학교 환경지질과학과) ;
  • 성규열 (한국해양대학교 에너지자원공학과)
  • Published : 2009.08.28

Abstract

The Geodo mine area, had been developed for Fe and Cu ores since 1963 and abandoned in recent decades, is located in the central part of the Taebaeksan mineralized district. This area comprises of the Jangsan, Myobong, Pungchon, Hwajeol, Dongjeom, and Dumugol Formations in ascending stratigraphic order. These Formations were intruded by the Cretaceous Eopyeong granitoids that appears to produce the Geodo skarn. Their compositions are relatively oxidized quartz monzodiorite to granodiorite (magnetite series, $Fe_2O_3/FeO=0.3{\sim}1.1$). Mineralizations related skarn deposit occur in the Myobong, Pungchon, and Hwajeol Formations. The proximal skarn is zoned from andraditic garnet ($Ad_{44-95}Gr_{1-53}$) predominant adjacent to the Eopyeong granitoids to diopsidic pyroxene ($Hd_{10-100}Di_{0-89}$) predominant away from the one. The differential proportion of garnet and pyroxene is generated by water/rock ratio and their source, such as magmatic and meteoric water. This is useful tool for assessment the overall oxidation state of the entire skarn system. Gold occurs in proximal red to brownish garnet skarn, and genetically associated with Bi- and Te-bearing minerals. Skarn deposit developed in the Geodo mine area is considered as oxidized Au skarn category, based on chemical composition of the Eopyeong granitoids, zonation of skarn, and gold occurrences. Garnet-rich skarn zone will be the main target for exploration of gold in the study area. However, it is needed to the detailed survey on vertical zonation of this area as well as lateral zonation. The result of this survey would provide an important basis for the exploration of the skarn Au deposit in the Geodo mine area.

태백산 광화대 중부에 위치한 거도광산은 최근 수 십년간 휴광상태이지만, 1963년부터 철과 동을 개발하였던 지역이다. 거도광산 지역은 장산규암, 묘봉층, 풍촌층, 화절층, 동점층 및 두무골층과 후기에 이를 관입한 백악기 어평화강 암체로 구성되어 있다. 거도 스카른을 형성시킨 어평화강암체의 조성은 상대적으로 산화된($Fe_2O_3/FeO=0.3{\sim}1.1$) 자철석계열의 석영몬조섬록암과 화강섬록암으로, 이들의 관입은 묘봉층, 풍촌층 및 화절층 내에 스카른 광화작용을 발달시켰다. 근지 외성 스카른은 어평화강암체 인근의 철이 부화된 안드라다이트(andradite) 석류석($Ad_{44-95}Gr_{1-53}$)이 우세한 지역에서 점차 멀어지면서 철이 결핍된 투휘석($Hd_{10-100}Di_{0-89}$)이 우세한 지역의 순으로 대상분포를 보인다. 이러한 석류석과 휘석의 다른 분포 특성은 모암의 조성 및 물/암석비 등의 차이에 기인된 것으로, 전체 스카른 시스템의 산화정도를 평가하는 중요한 요소이다. 거도광산의 금은 주로 근지의 적갈색 내지 갈색의 석류석이 우세한 스카른에서 산출되며, 성인적으로 함 비스무스-텔루륨 광물들과 밀접한 공생관계를 가진다. 거도광산의 금광작용과 관련된 관입암의 화학조성, 스카른대의 분포와 금의 산출특성 등은 산화형 스카른 금광상의 환경을 지시하며, 높은 석류석/휘석비를 갖는 스카른대가 탐사대상이 된다. 그러나 연구지역의 수평적 대상분포 외에 수직적 대상분포 특성에 대한 정밀탐사가 요구된다. 이는 거도광산 스카른대의 3차원적 이해를 가능하게 하며, 보다 체계적 탐사 및 구체적 개발 방안을 제시하는 중요한 기반을 제공할 것이다.

Keywords

References

  1. Atkinson, W.W., JR. and Einaudi, M.T. (1978) Skarn formation and mineralization in the Contact Aureole at Carr Fork, Bingham, Utah. Eonomic Geology, v. 73, p. 1326-1365 https://doi.org/10.2113/gsecongeo.73.7.1326
  2. Blevin, P.L. (2003) Metallogeny of granitic rocks in magmas to mineralization. Ishihara symposium
  3. Blevin, P.L. (2004) Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implication for gold-rich ore systems. Resource Geology, v. 54, p. 241-252 https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
  4. Cepedal, A., Fuertes_Fuente, M., Martin-Izard, A., Gonzalez-Nistal, S. and Rodriguez-Pevida, L. (2006) Tellurides, selenides and Bi-mineral assemblages from the Rio Narcea Gold Belt, Asturias, Spain: Genetic implications in Cu-Au skarn and Au skarns. Mineralogy and Petrology, v. 87, p. 277-304 https://doi.org/10.1007/s00710-006-0127-7
  5. Chang, H.W. and Park, K.H. (1982) Petrogenesis of Fe-Cu bearing Skarn at Keodo. Report of metal deposit, KIER, v. 14, p. 129-155
  6. Chang, Z. (2008) Zonation in skarns and controlling factors. 9th National Conference of Mineral Resources of China, Nov. 2008
  7. Choi, J.B. (1989) Mineralogy of skarns and associated minerals in the Geodo Mine, Korea. Unpub. Ph.D. thesis, Seoul National University, 247p
  8. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korea peninsula: a review and new view. Earth-Science Reviews, v. 52, p. 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  9. Ciobanu, C.L., Birch, W., Pring, A. and Cook, N.J. (2007) Au-Bi-Te-S assemblages from Maldon gold deposit, Victoria, Australia. Geological Society of America Abstracts with Programs, v. 39, p. 626
  10. Einaudi, M.T., Meinert, L.D. and Newberry, R.J. (1981) Skarn deposits. Economic Geologists 75th Anniv. Vol., p. 317-391
  11. Ettlinger, A.D., Meinert, L.D. and Ray, G.E. (1992) Gold skarn mineralization and fluid evolution in the Nickel Plate deposit, Hedley district, British Columbia. Economic Geology, v. 87, p. 1541-1565 https://doi.org/10.2113/gsecongeo.87.6.1541
  12. Farrar, E., Clark, A.H. and Kim, O.J. (1978) Age of the Sangdong tungsten deposit, Republic ofKorea, and its bearing on metallogeny of the southern Korean Peninsula on metallogeny of the southern Korean Peninsula. Economic Geology, v. 73, p. 547-566 https://doi.org/10.2113/gsecongeo.73.4.547
  13. Fontbot$\acute{e}$, L., Vallance, J., Markowski, A. and Chiaradia, M. (2004) Oxidized gold skarn in the Nambija district, Ecuador. Society of Economic Geologists, Reviews in Economic Geology, v. 11, p. 341-357
  14. Hickey, R.J., III. (1990) the geology of the Buckhorn nountain gold skarn Okanagon County, Washington. Unpublished M.S. thesis, Pullman, Washington State University, 171 p
  15. Kim, D.Y., Song, Y.S. and Park, K.H. (1988) Petrology, geochemistry and geochronology of charnockite in eastern Jirisan area. Annu. Meeing Petrol. Soc. p. 35-36
  16. Kim, E.J. (2008) Bi- and Te-Bearing Skarn Gold Mineralization on the Geodo Mine, South Korea. Unpublished M.S. thesis, Busan, South Korea, Pukyeong National University, 90 p
  17. Kim, J.H. (1994) Structure in the Taebaeksan zone. In: Ree, J.H., Cho, M., Kwon, S.lT., Kim, J.H. (Eds.), Structure and Metamorphism of the Ogcheon Belt:Field Trip Guidebook. IGCP Project 321 Organizing Committee. p. 23-57
  18. Kim, J.H. and Kee, W.S. (1991) Tectonic significances of the Soonchang shear zone, the Hwasum coalfield, Korea. J. Geol. Soc. Korea, v. 27, p. 642-655
  19. Kim, J.H. and Lee, J.D. (1991) Geologic structures of the Yemi area, Kangweon-do, Korea. J. Geol. Soc. Korea, v. 27, p. 500-514
  20. Kim, J.H. and Won, C.H. (1987) Structural analysis of Hwangji-area, Samcheog coalfield, Korea. J. Geol. Soc. Korea, v. 23, p. 136-144
  21. Kim, J.H., Lee, J.Y. and Nam, K.H. (1994) PreJurassic thrust movement in Danyang area, Danyang coalfield, Korea. J. Geol. Soc. Korea, v. 30, p. 35-40
  22. Kim, O.J. (1971) Study on the intrusion epochs of younger granites and their bearing to orogenesis in South Korea. Jour. Korean Inst. Mining Geol., v. 4, p.1-9
  23. Ko, J.D. and Kim, S.J. (1982) Mineralogy and genesis of Fe-Cu and Au-Bi-Cu deposits in the Geodo mine, Korea. Jour. Korean Inst. Mining Geol., v. 15, p. 189-204
  24. KORES (2003) A close investigation report of the Geodo mine area, 123p
  25. Kwak, T.A.P. and White, A.J.R. (1982) Contrasting W-Mo- Cu and W-Sn-F skarn types and related granitoids. Mining Geology, v. 32, p. 339-351
  26. Meinert, L.D. (1989) Gold skarn deposits-geology and exploration criteria. Economic Geology Monograph 6, p. 537-552
  27. Meinert, L.D. (1992) Skarns and skarn deposits. Geoscience Canada, v. 19, p. 145-162
  28. Meinert, L.D. (1995) Compositional variation of igneous rocks associated with skarn deposits - Chemical evidence for a genetic connection between petrogenesis and mineralization. in Thompson, J.F.H., ed., Magmas, fluids, andore deposits, Min. Assoc. Can. Short Course Series, v. 23, p. 401-418
  29. Meinert, L.D. (1997) Application of skarn deposit zonation models to mineral exploration. Exploration and Mining Geology, v. 6, p. 185-208
  30. Meinert, L.D. (1998) A review of skarn that contain gold. Mineralogical Association of Canada Short Course Series, v. 26, p. 359-414
  31. Meinert, L.D. (2000) Gold in skarns related to epizonal intrusions: Reviews in Economic Geology, v. 13, p. 347-375
  32. Meinert, L.D., Dipple, G. M. and Nicolescu, S. (2005) World Skarn Deposits. Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton, Colorado, USA, p. 299-336
  33. Moon, K.J. (1991) Review of skarn ore deposits at the southern limb of the Baegunsan Syncline in the Taebaek Basin of South Korea. Jour. Geol. Soc. Korea, v. 27, p. 271-292
  34. Myers, G.D. and Meinert, L.D. (1991) Alteration, mineralization, and gold distribution in the Fortitude gold skarn. in Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H. eds., Geology and ore deposits of the Great Basin: Reno, Geological Society of Nevada, v. 1, p. 407-418
  35. Nweberry, R.J. (1987) Use of intrusive and clac-silicate compositional data to distinguish contrasting skarn types in the Darwin polymetallic skarn district, California, USA. Mineralium Deposita, v. 22, p. 207-215
  36. Park, H.I., Chang, H.W. and Jin, M.S. (1988) K-Ar ages of mineral deposits in the Taebaek mountain district. Jour. Korean Inst. Mining Geol., v. 21, p. 57-67
  37. Ray, G.E. and Dawson, G.L. (1987) Geology and mineral occurrences in the Hedley gold camp. British Columbia Ministry of Energy, Mines and Petroleum Resources Open File Map 1987-10
  38. Ray, G.E. and Dawson, G.L. (1988) Geology and mineral occurrences in the Hedley gold camp. British Columbia Ministry of Energy, Mines and Petroleum Resources Open File Map 1988-6
  39. Ray, G.E. and Dawson, G.L. (1994) The geology and mineral occurrences in the Hedley gold camp. British Columbia Ministry of Energy, Mines and Petroleum Resources Bulletin 87, 156p
  40. Ray, G.E., Dawson, G.L. and Webster, I.C.L. (1996) The stratigraphy of the Nicola Group in the Hedley district, British Columbia and the chemistry of its intrusions and Au skarns. Canadian Journal of Earth Science, v. 33, p. 1105-1126
  41. Theodore, T.G., Orris, G.J., Hammarstrom, J.M. and Bliss, J.D. (1991) Gold-bearing skarns: U.S. Geological Survey Bulletin 1930, 61p
  42. Tooth, B., Brugger, J., Ciobanu, L. and Liu, W. (2008) Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology, v. 36, p. 815-818 https://doi.org/10.1130/G25093A.1
  43. Yun, H.S. (1986) Petrochemical study on the Cretaceous granitic rocks in the southern area of Hambaeg Basin. Jour. Korean Inst. Mining Geol., v. 19, p. 175-191
  44. Yun, S.G. (1983) Skarn-ore associations and phase equilibria in the Yeonhwa-Keodo mines, Korea. Jour. Korean Inst. Mining Geol., v. 16, p. 1-10
  45. Zharikov, V.A. (1970) Skarns. International Geology Review, v. 12, p. 541-559, p. 619-647, and p. 760-775 https://doi.org/10.1080/00206817009475262