• Title/Summary/Keyword: magnetics fields

Search Result 195, Processing Time 0.026 seconds

Effect of Permeability and Piezomagnetic Coefficient on Magnetostrictive/Piezoelectric Laminate Composite

  • Wu, Zhiyi;Wen, Yumei;Li, Ping;Yang, Jin;Dai, Xianzhi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.157-160
    • /
    • 2011
  • The magnetostrictive material is magnetized in magnetic field and produces a nonuniform demagnetizing field inside and outside it. The demagnetization is decided by the permeability of magnetostrictive material and its size. The magnetoelectric performances are determined by the synthesis of the applied and demagnetizing fields. An analytical model is proposed to predict the magnetoelectric voltage coefficient (MEVC) of magnetostrictive/piezoelectric laminate composite using equivalent circuit method, in which the nonuniform demagnetizing field is taken into account. The theoretical and experimental results indicate that the MEVC is positively connected with the permeability and the piezomagnetic coefficient of magnetostrictive material. To obtain the maximum MEVC, both the permeability and the piezomagnetic coefficient of magnetostrictive material should be taken into account in selecting the suitable magnetostrictive material.

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

Magnetotransport Properties of MnGeP2 Films (MnGeP2 박막의 자기수송 특성)

  • Kim, Yun-Ki;Cho, Sung-Lae;J.B., Ketterson
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.133-137
    • /
    • 2009
  • $MnGeP_2$ thin films grown on GaAs exhibit room-temperature ferromagnetism with $T_C{\sim}$320 K, based on both magnetization and resistance measurements. The coercive fields at 5, 250, and 300 K are 3870, 1380 and 155 Oe, respectively. The anomalous Hall effect was observed, indicating spin polarization of the carriers. Hysteresis has been observed in both magnetoresistance and Hall measurements. The current-voltage characteristics of a $MnGeP_2$ film grown on an n-type GaAs substrate display semiconducting behavior.

Large Tunneling Magnetoresistance of a Ramp-type Junction with a SrTiO3 Tunneling Barrier

  • Lee, Sang-Suk;Yoon, Moon-Sung;Hwang, Do-Guwn;Rhie, Kung-Won
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2003
  • The tunneling magnetoresistance (TMR) of a ramp-edge type junction with SrTiO$_3$barrier layer has been stud-ied. The samples with a structure of glass/NiO(600${\AA}$)/Co(100${\AA}$)/SrTiO$_3$(400 ${\AA}$)/SrTiO$_3$(20-100${\AA}$)/NiFe(100${\AA}$) were prepared by the sputtering and etched by the electron cyclotron (ECR) argon ion milling. Nonlinear I-V characteristics were obtained from a ramp-type tunneling junctions, having the dominant difference between two different external magnetic fields (${\pm}$100 Oe) perpendicular to the junction edge line. In the SrTiO$_3$ barrier thickness of 40${\AA}$, the TMR was 52.7% at a bias voltage of -50 mV The bias voltage dependence of resistance and TMR in a ramp-type tunneling junction was similar with those of the layered TMR junction.

A Study on Prototype Hybrid (LTS/HTS) Magnet for NMR Application

  • Choi, Suk-Jin;Hwang, Young-Jin;Ko, Tae-Kuk
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.312-317
    • /
    • 2011
  • NMR over 1 GHz (23.5 T) level has difficulties in design and fabrication with only low temperature superconducting (LTS) wire because of its material characteristics such as the decay of critical current under the magnetic field. Because High temperature superconducting (HTS) tape has a good performance under the extremely high magnetic field, it has been developed for high-field magnet over 23.5 T. In this paper, the LTS magnet was made for applying magnetic fields externally and the HTS coil was designed and fabricated. The electromagnetic field analysis has been done with respect to the structure and the operating current of the LTS and HTS coil. Considering to the field homogeneity and the center field, the design parameters which is suitable for the HTS coil were found. The HTS insert coil was impregnated with epoxy resin in order to prevent the movement of winding during energizing the magnet. The hybrid magnet (LTS/HTS) magnet was fabricated and tested based on the design parameters. The experimental result shows that the LTS background magnet and the HTS insert coil can be operated stable beyond 220 A and 210 A. The final value 4.32 T at the center was acquired.

Prototype Milli Gauss Meter Using Giant Magnetoimpedance Effect in Self Biased Amorphous Ribbon

  • Kollu, Pratap;Yoon, Seok-Soo;Kim, Gun-Woo;Angani, C.S.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.194-198
    • /
    • 2010
  • In our present work, we developed a GMI (giant magnetoimpedance) sensor system to detect magnetic fields in the milli gauss range based on the asymmetric magnetoimpedance (AGMI) effect in Co-based amorphous ribbon with self bias field produced by field-annealing in open air. The system comprises magnetoimpedance sensor probe, signal conditioning circuits, A/D converter, USB controller, notebook computer, and program for measurement and display. Sensor probe was constructed by wire-bonding the cobalt based amorphous ribbon with dimensions $10\;mm\;{\times}\;1\;mm\;{\times}\;20\;{\mu}m$ on a printed circuit board. Negative feedback was used to remove the hysteresis and temperature dependence and to increase the linearity of the system. Sensitivity of the milli gauss meter was 0.3 V/Oe and the magnetic field resolution and environmental noise level were less than 0.01 Oe and 2 mOe, respectively, in an unshielded room.

Magnetic Particle Separation by an Optimized Coil: A Graphical User Interface

  • Rouhi, Kasra;Hajiaghajani, Amirhossein;Abdolali, Ali
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.214-219
    • /
    • 2017
  • Magnetic separators that clean the fluid stream from impurities, protect the installations in numerous industries. This paper introduces a graphical user interface (GUI) which proposes an optimized coil separating magnetic particles with a radius from 1 up to 500 µm. High gradient magnetic fields are employed in an arbitrary user defined fluidic channel which is made of a nonmetallic material. The effects of coil parameters are studied and adjusted to design an optimum coil with a minimum Ohmic loss. In addition, to design the coil scheme based on the particle movements, a mathematical particle-tracing model within the fluid channels has been utilized. In comparison to conventional magnetic separators, this model is reconfigurable by the user, produces a weaker magnetic field, allows for continuous purifying and is easy to install, with high separation efficiency. The presented GUI is simple to use, where the coil's manufacturing limitations can be specified.

Crystallographic Effects of Larger Indium Ion Substitution in NiFe2-xInxO4 (x = 0, 0.2, 0.5, and 1.0) System

  • Yoon, Sung-Hyun;Yoon, Chang-Sun;Kim, Byung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The crystallographic and magnetic properties of a series of substitutions in nickel ferrite where the Fe3+ is replaced with In3+ have been investigated using X-ray diffraction (XRD) and Mössbauer spectroscopy. Information on the exact crystalline structure, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles by a Rietveld method. All the crystal structures were found to be cubic with the space group Fd/3m. The lattice constants increased with In3+ concentration. The expansion of the tetrahedron was outstanding, indicative of the tetrahedral (A) site preference of larger indium ion. The Mossbauer spectra showed two sets of sextuplet originating from ferric ions occupying the tetrahedral sites and the octahedral (B) sites under the Neel temperature TN. Regardless of the composition x, the electric quadrupole splitting was zero within the experimental error. At x = 0.2, the magnetic hyperfine fields increased slightly, which meant that the nonmagnetic indium ions occupied preferentially the A-site. At the same time, the intensity of the B-site sub-spectra decreased markedly at the elevated temperature, indicating that the occupation of the A site by indium induced a considerable perturbation on the B site.

Steady-State Current Characteristics for Squirrel Cage Induction Motor according to Design Variables of Rotor Bars using Time Difference Finite Element Analysis

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2017
  • Induction motors have wide applicability in many fields, both in industrial sectors and households, for their advantages of a high efficiency and robust structure. The introduction of power-source-containing harmonics into the induction motor winding lowers its efficiency and increases its temperature, greatly affecting its operation characteristics. In this study, we performed an electromagnetic field analysis using the time-difference finite-element method with the purpose of analyzing the steady-state current characteristics of an induction motor. Additionally, we calculated the steady-state current with a method combining an electromagnetic field equation and a circuit equation. In the electromagnetic field analysis, the nonlinearity was taken into account using the Newton-Raphson method, and a backward time-difference method was employed for the time derivative term. Then, we compared the steady-state current of the induction motor obtained by calculation with the experimentally measured values, thus validating the proposed algorithm. Furthermore, we analyzed the impacts of the shape and material of the rotor conductor bar of the induction motor on the steady-state current of the main winding.

Effects of Ga Substitution in LaFe1-xGaxO3 (χ= 0, 0.1, 0.3, 0.5, and 0.7)

  • Yoon, Sung-Hyun;Park, Seung-Jin;Cha, Deok-Joon;Min, Byung-Ki;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.40-44
    • /
    • 2002
  • Crystallographic and magnetic properties of ;$LaFe_{1-x}Ga_xO_3$($\chi$= 0, 0.1, 0.3, 0.5, and 0.7) were studied using XRD and Mossbauer spectroscopy. The crystal structures were found to be orthorhombic and the lattice parameters $\alpha$, b, and c were found to decrease with increasing Ga substitution. M$\ddot{o}$ssbauer spectra were obtained at various absorber temperatures ranging from 20 K to 750 K. The M$\ddot{o}$ssbauer spectra were all sextets below $T_N$ and were all singlets above $T_N$. Asymmetric broadening of the M$\ddot{o}$ssbauer spectral lines at 20 K was explained by the multitude of possible environments for an iron nucleus. As the temperature increases to $T_N$, a systematic line broadening in M$\ddot{o}$ssbauer spectra was observed and interpreted to originate from different temperature dependencies of the magnetic hyperfine fields at various iron sites.