• Title/Summary/Keyword: magnetic treatment

Search Result 1,531, Processing Time 0.027 seconds

Annealing Effect of Co/Pd Multilayers on Magnetic Properties During Interdifusion

  • Kim, Jai-Young;Jan E. Evetts
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.147-156
    • /
    • 1997
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media, due to a large Kerr rotation angle in the wavelength of a blue laser beam. However, since multilayer structure, as well as amorphous structure, is a non-equilibrium state in terms of free energy and a MO recording technology is a kind of thermal recording which is conducted around Curie temperature (Tc) of the recording media, when the Co/Pd mulilayer is used for the MO recording media, changes in the magnetic properties are occurred as the amorphous structure do. Therefore, the assessment of the magnetic properties in the Co/Pd multilayer during interdiffusion is crucially important both for basic research and applications. As the parameter of the magnetic properties in this research, saturation magnetization and perpendicular magnetic anisotropy energy of the Co/Pd multilayer are measured in terms of Ar sputtering pressure and heat treatment temperature. Form the results of the research, we find out that the magnetic exchange energy between Co and Pd sublayers strongly affects the changes in the magnetic properties of the Co/Pd multilayers during the interdiffusion in ferromagnetic state. This discovery will provide the understanding of the magnetic exchange energy in the Co/Pd multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF

Wernicke's Encephalopathy with Intracranial Hemorrhage

  • Jeon, Sunghee;Kang, Hyunkoo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.71-74
    • /
    • 2016
  • Wernicke's encephalopathy (WE) is an acute neurological disorder resulting from thiamine deficiency. Early diagnosis and treatment of WE is important to avoid persistent brain damage. Although histopathologic examination usually demonstrates pin-point hemorrhages in affected brain parenchyma, secondary hemorrhage is a rare but serious complication of WE. We experienced a rare case of intracranial hemorrhage related to WE in a 56-year-old male patient with malnourishment.

Transcranial magnetic stimulation parameters as neurophysiological biomarkers in Alzheimer's disease

  • Lee, Juyoun;Lee, Ae Young
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.1
    • /
    • pp.7-16
    • /
    • 2021
  • Transcranial magnetic stimulation (TMS) is a safe and noninvasive tool for investigating the cortical excitability of the human brain and the neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits. Neurophysiological biomarkers based on TMS parameters can provide information on the pathophysiology of dementia, and be used to diagnose Alzheimer's disease and differentiate different types of dementia. This review introduces the basic principles of TMS, TMS devices and stimulating paradigms, several neurophysiological measurements, and the clinical implications of TMS for Alzheimer's disease.

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo;Nam, Dae-Hyun;Lee, Young-Joo;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes

  • Choe Youngson;Park Si Young;Park Dae Won;Kim Wonho
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • Vacuum deposited copper phthalocyanine (CuPc) was placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in a multi-layered, organic, light-emitting diode (OLEOs). The well-stacked CuPc layer increased the stability and efficiency of the devices. Thermal annealing after CuPc deposition and magnetic field treatment during CuPc deposition were performed to obtain a stacked-CuPc layer; the former increased the stacking density of the CuPc molecules and the alignment of the CuPc film. Thermal annealing at about 100$^{circ}C$ increased the current flow through the CuPc layer by over 25$\%$. Surface roughness decreased from 4.12 to 3.65 nm and spikes were lowered at the film surface as well. However, magnetic field treatment during deposition was less effective than thermal treatment. Eventually, a higher luminescence at a given voltage was obtained when a thermally-annealed CuPc layer was placed in the present, multi-layered, ITO/CuPc/NPD/Alq3/LiF/AI devices. Thermal annealing at about 100$^{circ}C$ for 3 h produced the most efficient, multi-layered EL devices in the present study.

Pigment Degradation by Lignin Peroxidase Covalently Immobilized on Magnetic Particles

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2017
  • Pigment red 53:1 is a dye used in various products as a component of the inks, suspected of being carcinogenic. Thus, the environmental and occupational issues related to it are important. The enzyme-based approach with reusability has advantages to consume less energy and generate less harsh side- products compared to the conventional strategies including separations, microbe, and electrochemical treatment. The degradation of Pigment red 53:1 by the lignin peroxidase immobilized on the surface of magnetic particles has been studied. The immobilization of the peroxidase was conducted on magnetic particle surface with the treatment of polyethyleneimine, glutaraldehyde, and the peroxidase, in sequence. The immobilization was confirmed using X-ray photon spectroscopy. The absorbance peak of the pigment was monitored at 495 nm of UV/Vis spectrum with respect to time to calculate the catalytic activities of the pigment for the immobilized lignin peroxidase. For the comparison, the absorbance of the lignin peroxidase free in solution was also monitored. The catalytic rate constant values for the free lignin peroxidases and the immobilized those were 0.51 and $0.34min^{-1}$, respectively. The reusable activity for the immobilized lignin peroxidase was kept to 92% after 10 cycles. The stabilities for heat and storage were also investigated for both cases.

Factors Influencing the Background Parenchymal Enhancement in Follow-Up Breast MRI after Adjuvant Endocrine Therapy

  • Youk, Ji Hyun;Son, Eun Ju;Kim, Jeong-Ah
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2015
  • Purpose: To investigate factors influencing the evaluation of background parenchymal enhancement (BPE) at follow-up breast magnetic resonance imaging (MRI) after adjuvant endocrine therapy. Materials and Methods: One hundred twelve women with breast cancer and MRI of the contralateral unaffected breast before and after endocrine therapy were identified. Two readers in consensus performed blinded side-by-side comparison of BPE (minimal, mild, moderate, and marked) before and after therapy with categorical scales. Age, body mass index, menopausal status, treatment regimen (selective estrogen receptor modulator or aromatase inhibitor), chemotherapy, follow-up duration, BPE at baseline MRI, MRI field strength before and after therapy, and recurrence were analyzed for their influences on decreased BPE. Results: Younger age, premenopausal status, treatment with selective estrogen receptor modulator, MRI field strength, and moderate or marked baseline BPE were significantly associated with decreased BPE. In multivariate analysis, MRI field strength and baseline BPE showed a significant association. Conclusion: MRI field strength and baseline BPE before and after therapy .were associated with decreased BPE at post-therapy, follow-up MRI.