Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes

  • Choe Youngson (Department of Chemical Engineering, Pusan National University) ;
  • Park Si Young (Department of Chemical Engineering, Pusan National University) ;
  • Park Dae Won (Department of Chemical Engineering, Pusan National University) ;
  • Kim Wonho (Department of Chemical Engineering, Pusan National University)
  • Published : 2006.02.01

Abstract

Vacuum deposited copper phthalocyanine (CuPc) was placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in a multi-layered, organic, light-emitting diode (OLEOs). The well-stacked CuPc layer increased the stability and efficiency of the devices. Thermal annealing after CuPc deposition and magnetic field treatment during CuPc deposition were performed to obtain a stacked-CuPc layer; the former increased the stacking density of the CuPc molecules and the alignment of the CuPc film. Thermal annealing at about 100$^{circ}C$ increased the current flow through the CuPc layer by over 25$\%$. Surface roughness decreased from 4.12 to 3.65 nm and spikes were lowered at the film surface as well. However, magnetic field treatment during deposition was less effective than thermal treatment. Eventually, a higher luminescence at a given voltage was obtained when a thermally-annealed CuPc layer was placed in the present, multi-layered, ITO/CuPc/NPD/Alq3/LiF/AI devices. Thermal annealing at about 100$^{circ}C$ for 3 h produced the most efficient, multi-layered EL devices in the present study.

Keywords

References

  1. Z. Bao, A. J. Lovinger, and J. Dodabalapur, Appl. Phys. Lett., 69, 3066 (1996) https://doi.org/10.1063/1.116841
  2. B. Bialek, I. G. Kim, and J. I. Lee, Thin Solid Films, 436, 107 (2003) https://doi.org/10.1016/S0040-6090(03)00521-2
  3. M. I. Boamfa, P. C. M. Christianen, J. C. Maan, H. Engelkamp, and R. J. M. Nolte, Physica B, 294-295, 343 (2001)
  4. G. E. Collins, V. S. Williams, L. -K. Chau, K. W. Nebesny, C. England, P. A. Lee, T. Lowe, Q. Fernando, and N. R. Armstrong, Synth. Met., 54, 351 (1993) https://doi.org/10.1016/0379-6779(93)91081-C
  5. M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, Opt. Laser Technol., 35, 523 (2003) https://doi.org/10.1016/S0030-3992(03)00068-9
  6. Z. Ji, Y. Xiang, and Y. Ueda, Prog. Org. Coat., 49, 180 (2004)
  7. K. P. Khrishnakumar and C. S. Menon, Mater. Lett., 48, 64 (2001) https://doi.org/10.1016/S0167-577X(00)00281-0
  8. S. Yanagiya, S. Nishikata, G. Sazaki, A. Hoshino, K. Nakajima, and T. Inoue, J. Cryst. Growth, 254, 244 (2003) https://doi.org/10.1016/S0022-0248(03)01098-4
  9. C. Giebeler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, Appl. Phys. Lett., 72, 2448 (1998) https://doi.org/10.1063/1.121392
  10. S. -F. Chen and C. -W. Wang, Appl. Phys. Lett., 85, 765 (2004) https://doi.org/10.1063/1.1775282
  11. X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, Appl. Phys. Lett., 78, 410 (2001) https://doi.org/10.1063/1.1343849
  12. P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett., 69, 2270 (1996) https://doi.org/10.1063/1.117530
  13. X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, Appl. Phys. Lett., 74, 609 (1999) https://doi.org/10.1063/1.123161
  14. X. Zheng, Y. Wu, R. Sun, W. Zhu, X. Jiang, Z. Zhang, and S. Xu, Thin Solid Films, 478, 252 (2005) https://doi.org/10.1016/j.tsf.2004.08.020
  15. J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Appl. Phys. Lett., 73, 729 (1998) https://doi.org/10.1063/1.121982
  16. M. Pfeiffer, A. Beyer, T. Fritz, and K. Leo, Appl. Phys. Lett., 73, 3202 (1998) https://doi.org/10.1063/1.122718
  17. Y. Qiu, Y. Gao, P. Wei, and L. Wang, Appl. Phys. Lett., 80, 2628 (2002) https://doi.org/10.1063/1.1468894
  18. T. Kato, T. Mori, and T. Mizutani, Thin Solid Films, 393, 109 (2001) https://doi.org/10.1016/S0040-6090(01)01112-9
  19. M. Y. Chan, S. L. Lai, F. L. Wong, O. Lengyel, C. S. Lee, and S. T. Lee, Chem. Phys. Lett., 371, 700 (2003) https://doi.org/10.1016/S0009-2614(03)00310-5
  20. S. Lee, C. -H. Chung, and S. M. Cho, Synth. Met., 126, 269 (2002) https://doi.org/10.1016/S0379-6779(01)00568-9
  21. C. Giebeler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, J. Appl. Phys., 85, 608 (1999) https://doi.org/10.1063/1.369413
  22. K. Ihm, T. -H. Kang, K. -J. Kim, C. -C. Hwang, Y. -J. Park, K. -B. Lee, B. Kim, C. -H. Jeon, C. -Y. Park, K. Kim, and Y. - H. Tak, Appl. Phys. Lett., 83, 2949 (2003) https://doi.org/10.1063/1.1616977
  23. J. X. Sun, X. L. Zhu, H. J. Peng, M. Wong, and H. S. Kwok, Appl. Phys. Lett., 87, 093504 (2005) https://doi.org/10.1063/1.2035320
  24. V. W. -W. Yam, B. Li, Y. Yang, W. -K Ben, K. M. -C. Wong, and K. -K. Cheung, Eur. J. Inorg. Chem., 22, 4035 (2003)
  25. L. Pasimeni, M. Meneghetti, R. Rella, L. Valli, C. Granito, and L. Troisi, Thin Solid Films, 265, 58 (1995) https://doi.org/10.1016/0040-6090(95)06598-9
  26. F. Armand, H. Perez, S. Fouriaux, O. Araspin, J.-P. Pradeau, C. G. Claessens, E. M. Maya, P. Vazquez, and T. Torres, Synth. Met., 102, 1476 (1999) https://doi.org/10.1016/S0379-6779(98)00555-4
  27. Y. -L. Lee, Y. -C. Chen, C. -H. Chang, Y. -M. Yang, and J. -R. Maa, Thin Solid Films, 370, 278 (2000) https://doi.org/10.1016/S0040-6090(00)00946-9
  28. G. Y. Jung, A. Yates, I. D. W. Samuel, and M. C. Petty, Mater. Sci. Eng. C, C14, 1 (2001)
  29. K. Takemoto, Y. Inaki, and R. M. Ottenbrite, Functional Monomers and Polymers, Chap. 6 Electrically Conducting Polymers, Marcel Dekker, INC., New York and Basel, 1987