• Title/Summary/Keyword: magnetic shear

Search Result 199, Processing Time 0.025 seconds

GLOBAL LARGE SOLUTIONS FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM

  • Li, Jinlu;Yu, Yanghai;Zhu, Weipeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1521-1537
    • /
    • 2021
  • In this paper we consider the global well-posedness of compressible magnetohydrodynamic system in ℝd with d ≥ 2, in the framework of the critical Besov spaces. We can show that if the initial data, the shear viscosity and the magnetic diffusion coefficient are small comparing with the volume viscosity, then the compressible magnetohydrodynamic system has a unique global solution. Our result improves the previous one by Danchin and Mucha [10] who considered the compressible Navier-Stokes equations.

Rheological Characteristics of Magnetic $\gamma$-$Fe_{2}O_{3}$ and $CrO_2$ Particle Suspension (자성 $\gamma$-$Fe_{2}O_{3}$$CrO_2$ 입자 분산액의 유변특성 연구)

  • 김철암;이준석;최형진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 1999
  • Rheological characterization was examined for two different types of magenetic particle (rod-like $\gamma$-$Fe_{2}O_{3}$, $CrO_2$ )suspension in this study. The measured suspension viscosity (viscosity vs. concentration or shear rate) is used to obtain the dependence of viscous energy dissipation on the microstructural states of magnetic particle dispersions as well as the microstructural shape effects which are related to magnetic particle orientation. The empirical formulas from mean field theory and the Mooney equation are used to relate suspension viscosity to particle concentration. Intrinsic viscosities of these two different types of rod-like magnetic particle suspensions are found to exceed the prediction of hydrodynamic theory for dilute suspensions and support the existence of flocs containing significant amounts of immobilized suspending medium due to native attraction forces among particles in the microstructures.

  • PDF

A Study on the Stress and Crystal in Die-Upsetted Nd-Fe-B-Cu Alloys as a Function of Working Temperature (가공온도에 따라 다이업셋한 Nd-Fe-B-Cu 합금의 응력과 결정에 관한 연구)

  • Park, J.D.;Yang, H.S.;Kwak, C.S.;Jeung, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.61-71
    • /
    • 1994
  • This study is to investigate the stress distributions, crystal orientations and magnetic properties during die-upsetting according to working temperature of Nd-Fe-B-Cu alloys. The stress distributions in the specimens during compressing process were calculated by a finite element method program(SPID). The calculated stresses were effective stress (${\sigma}_{eff}$), compression stress(${\sigma}_z$), radial direction stress(${\sigma}_r$) rotational direction stress(${\sigma}_e$) and shear stress(${\tau}_{rz}$). The stress distributions of ${\sigma}_z$, obtained by a computer simulation showed that the stress components causing the magnetic alignment during die-upsetting of the cast magnets were very high at the center-part of a specimen, and decreased toward the periphery-part of a specimen. In view of the above results the magnetic properties should be better at the center-part of a specimen than any other parts. But the measured magnetic properties were better at the mid-part. These results should be due to the fact that the specimens were casted. Normally the magnetic properties are affected by the casting process as well as by the stress levels. ${\sigma}_r$, ${\sigma}_e$ are thought to affect the liquid phase flowing and domain patterns, respectively. The influence of ${\tau}_{rz}$ was trivial, ${\sigma}_{eff}$ distributed similar throughout the specimen. The Nd-rich phase appeared at the peripheral of the specimen where the stress level of ${\sigma}_r$, ${\sigma}_z$, was low or the stress level of ${\sigma}_e$ was high. The Nd-rich phase was squeezed out during die-upsetting. This phase had an effect on the crystal orientation and grain growth. The stress distributions of alloy were irregular at the parts of the specimen where the die contacted with specimen.

  • PDF

Effect of Additives on the Orientation of Magnetic Sr-Ferrite Powders in Powder Injection Molded Compacts (분말사출성형체에서 Sr-페라이트 자성분말의 배향도에 미치는 첨가제의 영향)

  • 조태식;정원용
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.240-245
    • /
    • 2001
  • The effect of additives on the orientation of magnetic Sr-ferrite powders has been studied during powder injection molding under applied magnetic field for fabricating multi-pole anisotropic sintered Sr-ferrite magnets. The orientation of the Sr-ferrite powders depends sensitively on the fluidity of powder-binder mixture, related to the binder additives and the injection molding temperature, and the magnetic field intensity. The orientation of Sr-ferrite powders is good for the compacts with stearic acid added in the binder system of paraffin wax/carnauba wax/HDPE, but it is poor for the compacts with silane coupling agent added. The orientation of Sr-ferrites higher than 80% is achieved at the following useful conditions; apparent viscosity lower than 2500 poise in 1000 sec$^{-1}$ shear rate and applied magnetic field higher than 4 kOe.

  • PDF

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

Geological Characteristics of Kyongju-Ulsan Area : Palaeomagnetism and Magnetic Susceptibility of the Granitic Rocks in the Ulsan Fault Area (경주-울산일원에 대한 지역지질 특성연구 : 울산단층주변 화강암류의 잔류자기와 대자율)

  • Kim, In-Soo;Son, Moon;Jung, Hyun-Jung;Lee, Joon-Dong;Kim, Jeong-Jin;Paik, In Sung
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.31-43
    • /
    • 1998
  • A total of 469 granitic samples were collected from 44 sites in the Ulsan fault area, southeast Korea. According to the previous petrographic studies, the granitic rocks have been divided into four groups (Hornblende biotite granodiorite, Hornblende granite, Biotite granite and Alkali-feldspar granite). NRM intensities, values of low field magnetic susceptibility, and magnetic behaviors during stepwise demagnetization experiments suggest rather a three-fold classification: In this scheme, Hornblende granite and Biotite granite are grouped together, as they did not show any significant differences in magnetic characteristics. Based on the Ishihara (1979)'s criterion, Alkali-feldspar granite is classified as ilmenite-series granite, whereas others are classified as magnetite-series granite. In the eastern part of the study area including the Tertiary basin area, declinations of site-mean characteristic remanent magnetizations (ChRMs) show clockwise deflection of more than 30 from the reference direction of east Asia. Both along and in the adjacent region of the Ulsan fault-line, however, no deflection of remanent direction was observed. A boundary line between the deflected and undeflected site-mean ChRMs is defined in this study, which runs roughly parallel to the Ulsan fault-line at the distance of about 6km eastward from the fault-line. We suggest that this newly found boundary line, which we call Yonil tectonic line, released dextral simple shear stress acted in the southeastern part of the Korean peninsula during the opening stage of the East Sea in the Early Cenozoic.

  • PDF

Effect of Powder Size on the Rheological Characteristics of Sm-Co Type Compound for Powder Injection Molding (사출성형용 컴파운드의 유연학적 특성에 미치는 SH-CO 계 분말의 입도 영향)

  • 정우상;김윤배;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.157-162
    • /
    • 2001
  • Rheological characteristics of Sm-Co type plastic magnet compound for powder injection molding process were investigated with the variation of the magnetic powder size, their relative contents and volume fraction using the mixture of fine and coarse powder. Shear viscosity of Sm-Co type compound was decreased with increasing the size of coarse powder due to the increase of powder packing density. However, the smaller the average size of fine powder resulted in the higher viscosity of compound due to the increase of agglomeration force. In case of mechanically milled Sm-Co type powder, the viscosity of compound with the mixture of coarse powder of 125∼75 ㎛ and fine powder of average size of 4.9 ㎛ greatly depends on their relative contents and shows a minimum value at the 60 % coarse powder fraction. This means that the compound shows a maximum packing density at the 60% coarse powder fraction. Compound viscosities satisfied well the rheological model with the volume fraction of magnetic powder, and maximum volume fraction of magnetic powder in Sm-Co type compound for powder injection molding was about 66%.

  • PDF

Study on Performance Comparison of MR Damper for Fluid Properties and Orifice Shapes (MR 유체물성과 오리피스 형상에 대한 MR 댐퍼 성능비교 연구)

  • Kwon, Young-Chul;Park, Sam-Jin;Kim, Ki-Young;Baek, Dae-Sung;Lee, Seok-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1305-1310
    • /
    • 2014
  • MR(Magneto-Rheological) damper generates the magnetic shear force due to the cohesiveness of MR fluid influenced by a magnetic field. MR fluid consists of magnetic particles and a base liquid. In the present study, the damping forces of MR damper were investigated for density 1.3, 1.5 and $1.7g/cm^3$, and viscosity 1000 and 10000cp, and for the change of orifice shapes. It was found that the increase in the density and viscosity of MR fluid could change the damping force of MR damper due to the magnetic effects. Also, the damping forces on orifice shapes increased as the orifice gap and length decreased. These results showed that the properties of MR fluid and orifice shapes were important for the optimum design of MR damper.

Effects of Coupling Agents on the Rheological and Magnetic Properties of Plastic Ferrite Magnets (커플링제가 플라스틱 페라이트 자석의 레올로지와 자기특성에 미치는 영향)

  • 이석희;최준환;문탁진;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.275-281
    • /
    • 1998
  • Effects of coupling agents on the rheological and magnetic properties of plastic ferrite magnets were investigated. Magnetic powder used was Sr-ferrite, and binder used was polypropylene (PP), and coupling agents used were ${\gamma}$-methacryloxypropyl trimethoxy silane (A174) and isopropyl triisostearoyl titanate (TTS). It was found that the addition of coupling agents to the PP/ferrite system reduced the melt viscosity and increased the magnetic properties considerably, and the treatment with TTS showed greater effect than A174 did. By comparison with that of the untreated one, the apparent viscosities of the mixtures treated with A174 and TTS decreased 23 % and 50%, respectively, at the shear rate of $1280\; sec^{-1}$ . Untreated plastic magnets showed remanent flux density $(B_r)$ of 1.89 kG and maximum energy energy product $(BH_{max})$ of 0.84 MGOe, and A174 treated magnets showed of Br 2.25 Kg and $BH_{max}$ of 1.23 MGOe. TTS treated magnets showed $B_r$ of 2.35 kG and $BH_{max}$ of 1.33 MGOe.

  • PDF

Electro-Magnetic Field Analysis for Optimal design of Magneto-Rheological Fluid Damper Core (자기점서유체 댐퍼 코어의 최적화 설계를 위한 전자기장 해석)

  • Song, June-Han;Son, Sung-Wan;Chun, Chong-Keun;Kwon, Young-Chul;Ma, Yang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1511-1517
    • /
    • 2008
  • The magneto-rheological fluid expresses different cohesiveness according to the strength of the external electric current. The magneto-rheological fluid damper, which uses such characteristics of the fluid, generates shear force due to the fluid's cohesiveness. The core can be said to determine the magneto-rheological fluid damper's performance. This study uses the finite element analysis to compare the performance of different electromagnetic forces, which are affected by the shapes of the coil, and thus to find the optimum design for the core. In addition, as a step to construct a high-efficient damper, we suggest a type of damper that can control multiple coils and compares the performance of this damper and that of the standard damper by comparing the performance of their electro-magnetic fields.