• Title/Summary/Keyword: magnetic ordering

Search Result 86, Processing Time 0.033 seconds

Preparation and Current-Voltage Characteristics of Well-Aligned NPD (4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl) Thin Films (분자배열된 4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl 증착박막 제조와 전기적 특성)

  • Oh, Sung;Kang, Do-Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.591-596
    • /
    • 2006
  • Topology and molecular ordering of NPD(4,4'-bis-[N-(1-naphthyl)-N-phenyl-amino]biphenyl) thin films deposited under magnetic field with post-deposition annealing were investigated. NPD was deposited onto ITO glass substrates via thermal evaporation process in vacuum. It is of great importance for highly oriented organic/metal films to have improved device performances such as higher current density and luminance efficiency. AFM (Atomic Force Microscope) and XRD (X-Ray Diffraction) analyses were used to characterize the topology and structure of oriented NPD films. The multi-source meter was used to observe the current-voltage characteristics of the ITO (Indium-Tin Oxide) / NPD (4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl) / Al (Aluminum) device. While NPD thin films deposited under magnetic field were not molecularly well aligned according to the XRD results, the films after post-deposition annealing at $130^{\circ}C$ were well-oriented. AFM images show that NPD thin films deposited under magnetic field had a smoother surface than those deposited without magnetic field. The current-voltage performance of NPD thin films was improved due to the enhanced electron mobility in the well-aligned NPD films.

Ferromagnetism and Anomalous Hall Effect of $TiO_2$-based superlattice films for Dilute Magnetic Semiconductor Applications

  • Jiang, Juan;Seong, Nak-Jin;Jo, Young-Hun;Jung, Myung-Hwa;Yang, Jun-Mo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.41-41
    • /
    • 2007
  • For use in spintronic materials, dilute magnetic semiconductors (DMS) are under consideration as spin injectors for spintronic devices[l]. $TiO_2$-based DMS doped by a cobalt, iron, and manganese et al. was recently reported to show ferromagnetic properties, even at temperatures above 300K and the magnetic ordering was explained in terms of carrier-induced ferromagnetism, as observed for a III-V based DMS. An anomalous Hall effect (AHE) and co-occurance of superparamagnetism in reduced Co-doped rutile $TiO_{2-\delta}$ films have also been reported[2]. Metal segregation in the reduced metal-doped rutile $TiO_2-\delta$ films still remains as problems to solve the intrinsic DMS properties. Superlattice films have been proposed to get dilute magnetic semiconductor (DMS) with intrinsicroom-temperature ferromagnetism. For a $TiO_2$-based DMS superlattice structure, each layer was alternately doped by two different transition metals (Fe and Mn) and deposited to a thickness of approximately $2.7\;{\AA}$ on r-$Al_2O_3$(1102) substrates by pulsed laser deposition. The r-$Al_2O_3$(1102) substrates with atomic steps and terrace surface were obtained by thermal annealing. Samples of $Ti_{0.94}Fe_{0.06}O_2$(TiFeO), $Ti_{0.94}Mn_{0.06}O_2$(TiMnO), and $Ti_{0.94}(Fe_{0.03}Mn_{0.03})O_2$ show a low remanent magnetization and coercive field, as well as superparamagnetic features at room temperature. On the other hand, superlattice films (TiFeO/TiMnO) show a high remanent magnetization and coercive field. An anomalous Hall effect in superlattice films exhibits hysisteresis loops with coercivities corresponding to those in the ferromagnetic Hysteresis loops. The superlattice films composed of alternating layers of $Ti_{0.94}Fe_{0.06}O_2$ and $Ti_{0.94}Mn_{0.06}O_2$ exhibit intrinsic ferromagnetic properties for dilute magnetic semiconductor applications.

  • PDF

Preparation and Characterization of Multiferroic $0.7BiFeO_3-0.3BaTiO_3$ Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작된 다강체 $0.7BiFeO_3-0.3BaTiO_3$ 박막의 특성 연구)

  • Kim, Kyung-Man;Yang, Pan;Zhu, Jinsong;Joh, Young-Gull;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.88-88
    • /
    • 2009
  • $BiFeO_3$(BFO), when forming a solid solution with $BaTiO_3$(BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.7BFO-0.3BTO thin films on $Pt(111)/TiO_2/SiO_2/Si$ substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $600^{\circ}C$ and an oxygen partial pressure of 10mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with. the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron. microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

PREPARATION AND CHARACTERIZATION OF MULTIFERROIC 0.8 $BiFeO_3$-0.2 $BaTiO_3$ THIN FIMLS BY PULSED LASER DEPOSITION

  • Kim, K.M.;Yang, P.;Zhu, J.S.;Lee, H.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.313-313
    • /
    • 2010
  • $BiFeO_3$ (BFO), when forming a solid solution with $BaTiO_3$ (BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.8 BFO-0.2 BTO thin films on Pt(111)/$TiO_2/SiO_2$/Si substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $700^{\circ}C$ and an oxygen partial pressure of 10mTorr and 330mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower and higher oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

Calculation on Electronic State of $MnO_2$ Oxide Semiconductor with other initial spin conditions by First Principle Molecular Orbital Method (제1원리 분자궤도계산법에 의한 초기 spin 조건에 따른 $MnO_2$ 반도체의 전자상태 변화 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung;Kim, Hyun-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.148-151
    • /
    • 2003
  • The spin density of ${\beta}-MnO_2$ structure was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}O_{56}]^{-52}$. The ${\beta}-MnO_2$ is a paramagnetic oxide semiconductor material having the energy band gap of 0.18 eV and an 3 loan-pair electrons in the 3d orbital of an cation. This material exhibits spin-only magnetism and has the magnetic ordering temperature of 94 K. Below this temperature its magnetism appears as antiferromagnetism. The calculations of electronic state showed that if the initial spin condition of input parameters changed, the magnetic state changed from paramagnetic to antiferromagnetic. When d orbital of all Mn atoms in cluster had same initial spin state as only up spin, paramagnetic spin density distribution appeared by the calculation. On the other way, d orbital had alternately changed spin state along special direction the resulted spin distribution showed antiferromagnetism.

  • PDF

Flux pinning properties of rf-sputtered YBCO films with $BaZrO_3$ doping (스퍼터링법에 의한 $BaZrO_3$도핑 YBCO 박막의 자속고정 특성 연구)

  • Chung, K.C.;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.374-374
    • /
    • 2009
  • We have fabricated pure YBCO films and $BaZrO_3$ doped ones on $CeO_2$ buffered YSZ single crystal substrates using rf-sputtering method. In this work, pure YBCO and 2 vol% BZO doped YBCO target were used to investigate the flux pinning properties of BZO doped YBCO films compared to undoped ones. BZO nanodots within the superconducting materials was known to comprise the self-assembled columnar defects along the c-axis from the bottom of YBCO films up to the top surface, thus can be a very strong pinning sites in the applied magnetic field parallel to them. We will discuss the possibility of growing self-assembled columnar defects in the rf-sputtering method. It is speculated that BZO and YBCO phases can separate and BZO form nanodots surrounded by YBCO epitaxial layers and continuous phase separation and ordering between these two materials, which was well studied in Pulsed Laser Deposition method. For this purpose, some severe experimental conditions such as on-axis sputtering, shorter target-substrate distance, high rf-power, etc was adopted and their results will be presented.

  • PDF

First-principle Study for AlxGa1-xP and Mn-doped AlGaP2 Electronic Properties

  • Kang, Byung-Sub;Song, Kie-Moon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.331-335
    • /
    • 2015
  • The ferromagnetic and electronic structure for the $Al_xGa_{1-x}P$ and Mn-doped $AlGaP_2$ was studied by using the self-consistent full-potential linear muffin-tin orbital method. The lattice parameters of un-doped $Al_xGa_{1-x}P$ (x = 0.25, 0.5, and 0.75) were optimized. The band-structure and the density of states of Mn-doped $AlGaP_2$ with or without the vacancy were investigated in detail. The P-3p states at the Fermi level dominate rather than the other states. Thus a strong interaction between the Mn-3d and P-3p states is formed. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the (Mn-3d)-(P-3p)-(Mn-3d) hybridization, which is attributed by the partially filled P-3p bands. The holes are mediated with keeping their 3d-characters, therefore the ferromagnetic state is stabilized by this double-exchange mechanism.

Structural and Magnetic Properties of $FePt-B_x\;at.\%$ (X=5, 10, 15, 25 and 33) thin Film by Post-Annealing

  • Lee Young-min;Lee Byeong-Seon;Lee Chan-Gyu;Koo Bon-Heun;Shimada Y.;Kitakami O.;Okamoto S.;Miyazaki T.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2005.12a
    • /
    • pp.154-155
    • /
    • 2005
  • Multi-layer film of $MgO/(FePt-B)_{50nm}/ MgO$ was deposited on Si(100) substrates by RF magnetron sputtering. The boron chips were uniformly placed oil tile FePt target. The boron content of thin film was found to be about 5, 10, 15, 25 and $33 at\%$ by using a CAMECA SX-51 wavelength dispersive spectroscopy (WDX). It is observed that X-ray diffraction patterns of FePt-B film by post-annealing exhibited a transformation from disordered fcc structure to ordered $Ll_0$ phase with fct structure from around $400^{\circ}C$. By adding B, annealing temperature for ordering is about $200^{\circ}C$ lower than that of pure FePt. This remarkable decrease of the annealing temperature is closely related to the high diffusivities of Fe and Pt associated with the defects caused by movements of B atoms. The maximum coercivity(Hc) for FePt films was found to be ${\~}$13 kOe after annealing at $600^{\circ}C$ for 1hr.

  • PDF

Fabrication of Fe Nanodot Using AAO Prepatterned by Laser Interference Lithography (레이저 간섭 석판술로 전처리된 AAO을 이용한 Fe 나노점 제작)

  • Hwang, H.M.;Kang, J.H.;Lee, S.G.;Lee, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.137-140
    • /
    • 2007
  • The ordering of nanopores in AAO has been improved by using laser interference lithography. After growing Fe and Cu on this substrate in vacuum and removing AAO, Fe nanodots are fabricated. The nanopores in AAO and nanodots are ordered in one dimension following the prepatterning. It has been confirmed from the magnetic hysteresis loop that the Fe nanodots have vortex structure and the dipolar interaction is dominant among them.

Anisotropy Angle Dependence of Interlayer Exchange Coupling of Perpendicular Magnetic [CoFe/Pt/CoFe]/IrMn Multilayers ([CoFe/Pt/CoFe]/IrMn 다층박막의 수직자기 이방성 각도에 따른 상호교환결합력 특성)

  • Lee, Sang-Suk;Choi, Jong-Gu;Hwang, Do-Guwn;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Dependence of interlayer exchange coupling on antiferromagnetic IrMn thickness, thermal stability, and parallel anisotropy angle in perpendicular anisotropy [CoFe/Pt/CoFe]/IrMn multilayers was investigated. The magnetic property of [CoFe($10{\AA}$)/Pt($8{\AA}$)/CoFe($10{\AA}$)] induced by antiferromagnetic ordering of IrMn layer was maintained a stable perpendicular anisotropy up to $250^{\circ}C$ and from $7{\AA}$ to $160{\AA}$ of IrMn thickness. The value of interlayer exchange coupling of [CoFe/Pt/CoFe]/IrMn multilayers with perpendicular anisotropy increased to 1.5 times at anisotropy angle of $60^{\circ}$ more than of $0^{\circ}$. On the other side, the interlayer exchange coupling at anisotropy angle of $90^{\circ}$ was $\infty$ Oe, it was likely diverted to a parallel shape magnetization.