DOI QR코드

DOI QR Code

Anisotropy Angle Dependence of Interlayer Exchange Coupling of Perpendicular Magnetic [CoFe/Pt/CoFe]/IrMn Multilayers

[CoFe/Pt/CoFe]/IrMn 다층박막의 수직자기 이방성 각도에 따른 상호교환결합력 특성

  • Lee, Sang-Suk (Dept. of Oriental Biomedical Engineering, Sangji University) ;
  • Choi, Jong-Gu (Oriental Medicine Institute, Sangji University) ;
  • Hwang, Do-Guwn (Dept. of Applied Physics and Electronics, Sangji University) ;
  • Rhee, Jang-Roh (Department of Physics, Sookmyung Women' University)
  • 이상석 (상지대학교 한방의료공학과) ;
  • 최종구 (상지대학교 한방의학연구소) ;
  • 황도근 (상지대학교 응용물리전자학과) ;
  • 이장로 (숙명여자대학교 물리학과)
  • Published : 2008.12.31

Abstract

Dependence of interlayer exchange coupling on antiferromagnetic IrMn thickness, thermal stability, and parallel anisotropy angle in perpendicular anisotropy [CoFe/Pt/CoFe]/IrMn multilayers was investigated. The magnetic property of [CoFe($10{\AA}$)/Pt($8{\AA}$)/CoFe($10{\AA}$)] induced by antiferromagnetic ordering of IrMn layer was maintained a stable perpendicular anisotropy up to $250^{\circ}C$ and from $7{\AA}$ to $160{\AA}$ of IrMn thickness. The value of interlayer exchange coupling of [CoFe/Pt/CoFe]/IrMn multilayers with perpendicular anisotropy increased to 1.5 times at anisotropy angle of $60^{\circ}$ more than of $0^{\circ}$. On the other side, the interlayer exchange coupling at anisotropy angle of $90^{\circ}$ was $\infty$ Oe, it was likely diverted to a parallel shape magnetization.

[CoFe/Pt/CoFe]/IrMn 다층박막에 대하여 반강자성체 IrMn층 두께 의존성 및 열적안정성, 수평으로 전환하는 각도에 의존하는 수직자기 이방성 특성을 관찰하였다. IrMn층을 통해 유도된 강자성체/비자성체/강자성체 구조인 [CoFe($10{\AA}$)/Pt($8{\AA}$)/CoFe($10{\AA}$)]/IrMn 다층박막은 IrMn 두께 $7{\AA}$부터 상호교환결합력이 형성되었고, 열처리 온도 $250^{\circ}C$까지 열적안정성을 유지하였다. 수직자기 이방성 [CoFe/Pt/CoFe]/IrMn 다층박막에서 바닥 CoFe층과 Pt층을 사이에 두고 반강자성체인 IrMn층에 의해 고정되어 있는 상부 CoFe층간의 상호교환결합력은 이방성 측정 각도가 $0^{\circ}$, $60^{\circ}$일 때 각각 1,000 Oe, 1,500 Oe로, $90^{\circ}$일 때 $\infty$ Oe로 나타났다.

Keywords

References

  1. D. T. Margulies, M. E. Schabes, W. McChesney, and E. E. Fullerton, Appl. Phys. Lett., 80, 91 (2002) https://doi.org/10.1063/1.1431397
  2. S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett., 64, 2304 (1990) https://doi.org/10.1103/PhysRevLett.64.2304
  3. Z. Y. Liu and S. Adenwalla, Phys. Rev. Lett., 91, 37207 (2003) https://doi.org/10.1103/PhysRevLett.91.037207
  4. P. Bruno and Chappert, Phys. Rev. Lett., 67, 1602 (1991) https://doi.org/10.1103/PhysRevLett.67.1602
  5. J. G. Choi, S. S. Lee, D. G. Hwang, and S. W. Kim, Sae Mulli (The Kor. Phys. Soc.), 50, 334 (2005)
  6. S. S. Lee, J. G. Choi, S. W. Kim, D. G. Hwang, and J. R. Rhee, J. Magnetics (The Kor. Mag. Soc.), 10, 44 (2005) https://doi.org/10.4283/JMAG.2005.10.2.044
  7. S. W. Kim, J. Y. Lee, S. S. Lee, E. J. Hahn, and D. G. Hwang, J. Magnetics (The Kor. Mag. Soc.), 9, 121 (2005)
  8. S. S. Lee, J. R. Rhee, J. G. Choi. S. W. Kim, D. G. Hwang, Y. S. Hong, and M. S. Yoo, Phys. Stat. Sol. (c), 1, 3560 (2004) https://doi.org/10.1002/pssc.200405504
  9. J. Heo, H. S. Kim, J. H. Choi, and K. A. Lee, J. Kor. Mag. Soc., 18, 98 (2008) https://doi.org/10.4283/JKMS.2008.18.3.098
  10. K. S. Lee, K. J. Lee, M. H. Jung, and K. Shin, J. Kor. Mag. Soc., 18, 94 (2008) https://doi.org/10.4283/JKMS.2008.18.3.094
  11. S. S. Lee, J. G. Choi. S. W. Kim, J. R. Rhee, and D. G. Hwang, J. Magn. Magn. Mater., 304, e91 (2006) https://doi.org/10.1016/j.jmmm.2006.01.188
  12. S. S. Lee, B. K. Kim, J. Y. Lee, D. G. Hwang, S. W. Kim, M. Y. Kim, J. Y. Hwang, and J. R. Rhee, J. Appl. Phys., 95, 7525 (2004) https://doi.org/10.1063/1.1676035
  13. S. W. Kim, J. K. Kim, J. H. Kim, B. K. Kim, S. S. Lee, D. G. Hwang, and J. R. Rhee, J. Appl. Phys., 93, 6602 (2003) https://doi.org/10.1063/1.1557238