• 제목/요약/키워드: magnetic induction

검색결과 577건 처리시간 0.031초

자기 온열 시스템의 열 발생 효율에 관한 실험적 연구 (The Experimental Study of Heat Generation Efficiency of Magnetic Hyperthermia System)

  • 송영진;오정환
    • 한국연소학회지
    • /
    • 제16권2호
    • /
    • pp.33-39
    • /
    • 2011
  • We demonstrated heat generation efficiency of the magnetic hyperthermia system to find optimal condition using gelatin tissue phantom. Magnetic hyperthermia induction can be used to make heat generation with different concentration of $Fe_3O_4$ iron oxide inside tissue phantom and magnetically labeled cells by applying AC magntic field at a frequency of 145 kHz. It was observed that the maximum temperature achieved in the magnetic gelatin tissue phantom increased with the concentration of $Fe_3O_4$ iron oxide and alternating magnetic field intensity. Results were discussed with respect to further optimization of therapeutic technique for biomedical application with modified functional nanoparticles.

자기부상열차용 선형 유도전동기 (Linear Induction Motor for Magnetic Levitation Vehicle)

  • 김정철;박영호;김대광;최종묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.220-224
    • /
    • 2005
  • EMU(Electric Multiple Unit) operated in local area is mostly consist of moving system on the rail and the traction motor drives the gear and wheel with the mechanical propulsion force. Most of countries are interested in Magnetic Levitation Vehicle for the transportation system on next generation and they have been studying about it continuously. Thus this paper is studied the Linear Induction Motor as the propulsion equipment of Magnetic Levitation Vehicle

  • PDF

전자기장 해석을 이용한 유도가열 해석 (Analysis of induction heating using analysis of electro-magnetic field)

  • 윤진오;양영수;조시훈;현충민
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.187-189
    • /
    • 2006
  • Transient finite element method for analysis of moving coil needs many number of elements and much time to make calculation. Therefore, induction heating process for moving coil was simulated by traveling the position of the heating planes in this paper. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Finite element program was developed and finite element results were compared with the experimental results.

  • PDF

유도전동기의 자기적 포화가 가변속 제어의 효율에 미치는 영향 (Effect for Eefficiency of Variable Speed Control of Magnetic Saturation in Induction Machine)

  • 정종호;윤서진;이은웅;문제연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.52-54
    • /
    • 1998
  • In this paper, analytically presented the magnetic saturation impact on the efficiency of induction motor. Especially, in this study concerned with various cases such as included magnetic saturation, constant flux.

  • PDF

이동좌표계를 이용한 3차원 유도가열공정 해석 (Three Dimensional Analysis of Induction Heating Process using a Moving Coordinate)

  • 윤진오;양영수;신희윤
    • Journal of Welding and Joining
    • /
    • 제25권1호
    • /
    • pp.24-29
    • /
    • 2007
  • Finite element analysis for induction heating process including magnetic and thermal situations is presented. Because magnetic and thermal material properties vary with the temperature, material properties depending on temperature are considered. As the inductor moves, the solution domains corresponding to the inductor change into those of the air and the solution domains corresponding to the air change into those of the inductor. For these reasons, modeling of induction heating process is very difficult with a general purpose commercial programs. In this paper, three dimensional analysis of induction heating process for moving inductor is analyzed using moving coordinate. The skin effect is confirmed inside the steel plate in the electro-magnetic analysis. The distribution of heat generation at the initial state is different from that at the quasi-stationary state. Therefore, material properties depending on temperature must be considered. The calculated results of finite element analysis agree well with the experimental temperature results. This approach is suitable to solve magneto-thermal coupled problems.

교류자기장에 의한 유도가열체를 이용한 평판 디스플레이용 COG (Chip On Glass) 접속기술 (COG (Chip On Glass) Bonding Technology for Flat Panel Display Using Induction Heating Body in AC Magnetic Field)

  • 이윤희;이광용;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제12권4호통권37호
    • /
    • pp.315-321
    • /
    • 2005
  • 교류자기장에 의한 유도가열체를 이용하여 LCD 평판 디스플레이 패널의 가열을 최소화하면서 IC 칩을 실장시킬 수 있는 COG 접속기술에 대해 연구하였다. 크기 5mm${\times}$5mm, 두께 $600{\mu}m$의 Cu 도금막으로 제조한 유도가열체에 14 kHz, 230 Oe의 교류자기장을 인가시 60초 이내에 유도가열체의 온도가 Sn-3.5Ag 무연솔더의 리플로우에 필요한 $250^{\circ}C$에 도달하였으며, 유도가열체로부터 2 mm 떨어진 부위에서부터 기판의 온도는 $100^{\circ}C$ 이하로 유지되었다. 이와 같은 Cu 도금막 유도가열체에 14 kHz, 230 Oe의 교류자기장을 120초 동안 인가하여 Sn-3.5Ag 솔더범프를 리플로우 시켜 COG 실장을 하는 것이 가능하였다.

  • PDF

회전속도에 따른 유도기의 무효전력 변화 분석 (Analysis for the Reactive Power Changes of Induction Machines According to Rotation Speed)

  • 김종겸;박영진
    • 조명전기설비학회논문지
    • /
    • 제29권3호
    • /
    • pp.96-101
    • /
    • 2015
  • Induction machine requires a rotating magnetic field for energy conversion. The current to generate a rotating magnetic field is the magnetization current. This magnetization current corresponds to the reactive power. Reactive power is higher than active power at start-up of induction motor. As the rotation speed is increased, their magnitudes are reversed each other. The active power is higher than the reactive power at near the synchronous speed. This paper is dealing with the analysis result for the changes of the magnetizing current and reactive power when the induction machine is operating as a motor or generator near synchronous speed.

유도가열을 이용한 선상가열 해석방법 (Analysis of Line Heating Using Induction Heating)

  • 윤진오;양영수
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.128-134
    • /
    • 2007
  • Induction heating process includes magnetic and thermal situations. In order to analyze the induction heating, material properties depending on temperature are considered. In this paper, three dimensional analysis of induction heating process for moving inductor is analyzed using moving coordinate. The skin effect is confirmed inside the steel plate in the electro-magnetic analysis. The heat generation at the initial state is different from that at the quasi-stationary state. Therefore, material properties depending on temperature must be considered. The results of finite element analysis agree well with the experimental temperature results.

  • PDF

유도전동기의 자기여자 및 역률보상에 대한 연구 (A Research on Self-excitation and Power Factor Compensation of Induction Motor)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.236-240
    • /
    • 2014
  • Induction motor requires a rotating magnetic for rotation. Current required to generate the rotating magnetic field is magnetizing current. This magnetizing current is associated with the reactive power. This reactive power must be supplied from source side. Therefore, the power factor of the induction motor is low. So, the capacitor is installed on the motor terminals to compensate for the low power factor. Power supply company has recommended to maintain a high power factor to the customer. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. So it is necessary to calculate the optimal capacity capacitor current does not exceed the magnetizing current. In this study, we first compute the no-load current and the reactive power of the induction motor and then calculates the limit of the maximum power factor without causing self-excitation.

비자성체 용기 가열을 위한 Induction Cooker 공진 네트워크 설계 및 검증 (Resonant Network Design and Verification of Induction Cooker for Heating Nonmagnetic Vessel)

  • 장은수;박상민;주동명;이병국
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.504-509
    • /
    • 2017
  • This paper proposes a procedure for designing a resonant network for induction cookers that enables the induction heating of magnetic and non-magnetic vessels. In order to design such network, the range of operating frequency must be determined according to the material of the vessels by measuring several parameters, such as equivalent resistance and inductance, which are reflected in the working coil of the vessels. Through this process, the capacitance of the resonant capacitor is determined. The PSIM simulation and experiment results verify the feasibility of the proposed design and the heating performance of the designed resonant network.