• Title/Summary/Keyword: magnetic field strength

Search Result 395, Processing Time 0.032 seconds

MHD WAVE ENERGY FLUXES GENERATED FROM CONVECTION ZONES OF LATE TYPE STARS

  • Moon, Yong-Jae;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.2
    • /
    • pp.129-149
    • /
    • 1991
  • An attempt has been made to examine the characteristics of acoustic and MHD waves generated in stellar convection zones($4000\;K\;{\leq}\;T_{eff}\;{\leq}\;7000\;K$, $3\;{\leq}\;\log\;g\;{\leq}\;4.5$). With the use of wave generation theories formulated for acoustic waves by Stein (1967), for MHD body waves by Musielak and Rosner (1987, 1988) and for MHD tube waves by Musielak et al.(l989a, 1989b), the energy fluxes are calculated and their dependence on effective temperature, surface gravity and megnetic field strength are analyzed by optimization techniques. In computing magneto-convection models, the effect of magnetic fields on the efficiency of convection has been taking into account by extrapolating it from Yun's sunspot models(1968; 1970). Our study shows that acoustic wave fluxes are dominant in F and G stars, while the MHD waves dominant in K and M stars, and that the MHD wave fluxes vary as $T_{eff}^4{\sim}T_{eff}^7$ in contrast to the acoustic fluxes, as $T_{eff}^{10}$. The gravity dependence, on the other hand, is found to be relatively weak; the acoustic wave fluxes ${\varpropto}\;g^{-0.5}$, the longitudinal tube wave fluxes ${\varpropto}\;g^{0.3}$ and the transverse tube wave fluxes ${\varpropto}\;g^{0.3}$. In the case of the MHD body waves their gravity dependence is found to be nearly negligible. Finally we assesed the computed energy fluxes by comparing them with the observed fluxes $F_{ob}$ of CIV(${\lambda}1549$) lines and soft X-rays for selected main sequence stars. When we scaled the corrected wave fluxes down to $F_{ob}$, it is found that these slopes are almost in line with each other.

  • PDF

Development of Small Performance Test Device for Helical-Type Magnetohydrodynamic (MHD) Seawater Propulsion Thruster (헬리컬형 자기유체역학(MHD) 해수 추진기 소형 성능시험장치 개발)

  • Chang, Doo-Hee;Jo, Jong Gab;Chang, Dae-Sik;Kim, Sun-Ho;Jin, Jeong-Tae;Ryu, Chang-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.46-54
    • /
    • 2022
  • A magnetohydrodynamic (MHD) seawater propulsion thruster has been proposed to reduce propeller noise, propeller pitting, and vessel vibration originated from the propeller cavitation. The MHD thruster was also focused to overcome the limitation of propulsion velocity for the special purpose of marine ships. The research trends and key technologies in the worldwide leading countries are reviewed for the development of MHD propulsion thrusters in Korea. A small performance test device was developed firstly with a conventional solenoid magnet of ≤0.6 Tesla and a helical-type cylindrical duct(inner diameter of 5 cm) of thruster. The artificial seawater was fabricated by a salt solution including a conductivity of 5~6 S/m. The measured flow velocity of artificial seawater in the test device was 0.03~0.42 m/s (0.06~0.84 Knot) with a magnetic field strength of 0.6 Tesla and the applied currents of 10~80 A including the change of anode materials. It was found that the flow direction of seawater was reversed by the directional change of applied current in the solenoid magnet.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

A study on unmanned watch system using ubiquitous sensor network technology (유비쿼터스 센서 네트워크 기술을 활용한 무인감시체계 연구)

  • Wee, Kyoum-Bok
    • Journal of National Security and Military Science
    • /
    • s.7
    • /
    • pp.271-303
    • /
    • 2009
  • "Ubiquitous sensor network" definition is this-Someone attaches electro-magnetic tag everything which needs communication between man to man, man to material and material to material(Ubiquitous). By using attached every electro-magnetic tag, someone detects it's native information as well as environmental information such as temperature, humidity, pollution and infiltration information(Sensor). someone connects it realtime network and manage generated information(Network). 21st century's war is joint combined operation connecting with ground, sea and air smoothly in digitalized war field, and is systematic war provided realtime information from sensor to shooter. So, it needs dramatic development on watch reconnaissance, command and control, pinpoint strike etc. Ubiquitous computing and network technologies are essential in national defense to operate 21st century style war. It is possible to use many parts such as USN combined smart dust and sensor network to protect friend unit as well as to watch enemy's deep area by unmanned reconnaissance, wearable computer upgrading soldier's operational ability and combat power dramatically, RFID which can be used material management as well as on time support. Especially, unmanned watch system using USN is core part to transit network centric military service and to get national defense efficiency which overcome the dilemma of national defense person resource reducing, and upgrade guard quality level, and improve combat power by normalizing guardian's bio rhythm. According to the test result of sensor network unmanned watch system, it needs more effort and time to stabilize because of low USN technology maturity and using maturity. In the future, USN unmanned watch system project must be decided the application scope such as application area and starting point by evaluating technology maturity and using maturity. And when you decide application scope, you must consider not only short period goal as cost reduction, soldier decrease and guard power upgrade but also long period goal as advanced defense ability strength. You must build basic infra in advance such as light cable network, frequency allocation and power facility etc. First of all, it must get budget guarantee and driving force for USN unmanned watch system project related to defense policy. You must forwarded the USN project assuming posses of operation skill as procedure, system, standard, training in advance. Operational skill posses is come from step by step application strategy such as test phase, introduction phase, spread phase, stabilization phase and also repeated test application taking example project.

  • PDF

Neutron Diffraction and Mössbauer Studies of Superexchange Interaction on Al Substituted Co-ferrite (Al이 치환된 Co 페라이트에 관한 뫼스바우어 분광법 및 중성자 회절 연구)

  • Kim, Sam-Jin;Myoung, Bo-Ra;Kim, Chul-Sung;Baek, Kyung-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.287-292
    • /
    • 2006
  • Al substituted $CoAl_{0.5}Fe_{1.5}O_{4}$ has been studied with x-ray and neutron diffraction, $M\"{o}ssbauer$ spectroscopy and magnetization measurements. $CoAl_{0.5}Fe_{1.5}O_{4}$ revealed a cubic spinel structure of ferrinmagnetic long range ordering at room temperature, with magnetic moments of $Fe^{3+}(A)(-2.29{\mu}_{B}),\;Fe^{3+}(B)(3.81\;{\mu}_{B}),\;Co^{2+}(B)(2.66{\mu}_{B})$, respectively. The temperature dependence of the magnetic hyperfine field in $^{57}Fe$ nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the $N\'{e}el$ theory of magnetism. In the sample of $CoAl_{0.5}Fe_{1.5}O_{4}$, the interaction A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B}=-19.3{\pm}0.2k_{B}\;and\;J_{A-A}=-21.6{\pm}0.2k_{B}$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B}=3.8{\pm}0.2k_{B}$.

Design of EMI Reduction of SMPS Using MLCC Filters (MLCC를 이용한 SMPS의 EMI 저감 설계)

  • Choi, Byeong-In;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, as the data speed and operating frequencies of Ethernet keeps increasing, electro magnetic interference (EMI) also becomes increasing. The generation of such EMI will cause malfunction of near electronic devices. In this study, EMI filters were applied to reduce the EMI generated by DC-DC SMPS (switching mode power supply), which is the main cause of EMI generation of Ethernet switch. As the EMI filter, MLCCs with excellent withstanding voltage characteristics were used, which had advantages in miniaturization and mass production. Two types of EMI MLCC filters were used, which are X-capacitor and X, Y-capacitor. X-capacitor was composed of 2 MLCCs with 10 nF and 100 nF capacity and 1 Mylar capacitor. Y-capacitor was consisted of 6 MLCCs with a capacity of 27 nF. When only X-capacitor was applied as EMI filter, the conductive EMI field strength exceeded the allowable limit in frequency range of 150 kHz ~ 30 MHz. The radiative EMI also showed high EMI strength and very small allowable margin at the specific frequencies. When the X and Y-capacitors were applied, the conductive EMI was greatly reduced, and the radiation EMI was also found to have sufficient margin. In addition, X, Y-capacitors showed very high insulation resistance and withstanding resistance performances. In conclusion, EMI X, Y-capacitors using MLCCs reduced the EMI noise effectively and showed excellent electrical reliability.

Development of MRI Simulator Early Diagnosis Program for Self Learning (자가 학습을 위한 MRI Simulator 초기 검사 프로그램 개발)

  • Jeong, Cheon-Soo;Kim, Chong-Yeal
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.403-410
    • /
    • 2015
  • Since 1970, MRI has greatly been developing in terms of strength of magnetic field, the number of receipt channels, and short time of examination. With the development of digital systems and wireless network, hospitals have also acquired, saved, and managed digital images taken by various kinds of medical imaging equipment. However, domestic universities fail to provide practice training course independently thanks to expensive practice equipment and high maintenance cost, and rely on clinical training. Therefore, this study developed a MR patient diagnosis program based on Windows PC to help out students before their working in clinical filed. The designed Relational Database of MRI Simulator is made up of seven tables according to functions and data characteristics. Regarding the designed patient information, each stepwise function was classified by the patient registration method in clinical field. In addition, on the assumption of the basic information for diagnosis, each setting and content were classified. The menu by execution step was arrayed on the left side for easy view. For patient registration, a patient's name, gender, unique ID, birth date, weight, and other types of basic information were entered, and the patient's posture and diagnosis direction were set up. In addition, the body regions for diagnosis and Pulse Sequence were listed for selection. Also, Protocol name and other additional factors were allowed to be entered. The final window was designed to check diagnosis images, patient information, and diagnosis conditions. By learning how to enter patient information and change diagnosis conditions in this program, users will be able to understand more theories and terms learned in practice and thereby to shorten their learning time in actual clinical work.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.

Evaluation between 3.0 T vs 1.5 T MRI in Detection of Brain Metastasis using Double Dose Gd-DTPA (뇌전이 종양의 발견에 있어서 Doble dose Gd-DTPA를 이용한 3 T MRI와 1.5 T MRI간의 비교연구)

  • Chung, Woo-Suk;Kim, Hyung-Jung;Ahn, Chul-Min;Lee, Jae-Hoon;Hur, Jin;Cho, Eung-Hyuck;Chung, Tae-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Purpose : Early detection of small brain metastases is important. The purpose of this study was to compare the detectability of brain metastases according to the size between 1.5 T and 3.0 T MRI. Materials and Methods : We reviewed 162 patients with primary lung cancer who were examined for TNM staging. After administration of double dose of Gd-DTPA, MR imaging was performed with SPGR by 3.0 T MRI and then with T1 SE sequence by 1.5 T MRI. In each patient, three readers performed qualitative assessment. Sensitivity, positive predictive value, and diagnostic accuracy were calculated in 3.0 T and 1.5 T MRI according to size. Using the signal intensity (SI) measurements between the metastatic nodules and adjacent tissue, nodule-to-adjacent tissue SI ratio was calculated. Results : Thirty-one of 162 patients had apparent metastatic nodules in the brain at either 1.5 T or 3.0 T MR imaging. 143 nodules were detected in 3.0 T MRI, whereas 137 nodules were detected at 1.5 T MRI. Six nodules, only detected in 3.0 T MRI, were smaller than 3.0 mm in dimension. Sensitivity, positive predictive value, and diagnostic accuracy in 3.0 T MRI were 100 %, 100 %, and 100 % respectively, and in 1.5 T MRI were 95.8%, 88.3%, and 85.1% respectively. SI ratio was significantly higher in the 3.0 T MRI than 1.5 T MRI (p=0.025). Conclusion : True positive rate of 3.0 T MRI with Gd-DTPA was superior to 1.5 T MRI with Gd-DTPA in detection of metastatic nodules smaller than 3.0 mm.

  • PDF

Effect of Temperature on T1 and T2 Relaxation Time in 3.0T MRI (3.0T MRI에서 온도변화가 T1 및 T2 이완시간에 미치는 영향)

  • Kim, Ho-Hyun;Kwon, Soon-Yong;Lim, Woo-Teak;Kang, Chung-Hwan;Kim, Kyung-Soo;Kim, Soon-Bae;Baek, Moon-Young
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Purpose : The relaxation times of tissue in MRI depend on strength of magnetic field, morphology of nuclear, viscosity, size of molecules and temperature. This study intended to analyze quantitatively that materials' temperatures have effects on T1 and T2 relaxation times without changing of other conditions. Materials and Methods : The equipment was used MAGNETOM SKYRA of 3.0T(SIEMENS, Erlagen, Germany), 32 channel spine coil and Gd-DTPA water concentration phantom. To find out T1 relaxation time, Inversion Recovery Spin Echo sequences were used at 50, 400, 1100, 2500 ms of TI. To find out T2 relaxation time, Multi Echo Spin Echo sequences were used at 30, 60, 90, 120, 150, 180, 210, 240, 270 ms of TE. This experiment was scanned with 5 steps from 25 to $45^{\circ}C$. next, using MRmap(Messroghli, BMC Medical Imaging, 2012) T1 and T2 relaxation times were mapped. on the Piview STAR v5.0(Infinitt, Seoul, Korea) 5 steps were measured as the same ROI, and then mean values were calculated. Correlation between the temperatures and relaxation times were analyzed by SPSS(version 17.0, Chicago, IL, USA). Results : According to increase of temperatures, T1 relaxation times were $214.39{\pm}0.25$, $236.02{\pm}0.87$, $267.47{\pm}0.48$, $299.44{\pm}0.64$, $330.19{\pm}1.72$ ms. T2 relaxation times were $180.17{\pm}0.27$, $197.17{\pm}0.44$, $217.92{\pm}0.39$, $239.89{\pm}0.53$, $257.40{\pm}1.77$ ms. With the correlation analysis, the correlation coefficients of T1 and T2 relaxation times were statistically significant at 0.998 and 0.999 (p< 0.05). Conclusion : T1 and T2 relaxation times are increased as temperature of tissue goes up. In conclusion, we suggest to recognize errors of relaxation time caused local temperature's differences, and consider external factors as well in the quantitative analysis of relaxation time or clinical tests.

  • PDF