• Title/Summary/Keyword: magnetic field energy

Search Result 691, Processing Time 0.026 seconds

Magnetization of a Modified Magnetic Quantum Dot

  • Park, Dae-Han;Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.154-157
    • /
    • 2016
  • The energy dispersion and magnetization of a modified magnetic dot are investigated numerically. The effects of additional electrostatic potential, magnetic field non-uniformity, and Zeeman spin splitting are studied. The modified magnetic quantum dot is a magnetically formed quantum structure that has different magnetic fields inside and outside of the dot. The additional electrostatic potential prohibits the ground-state angular momentum transition in the energy dispersion as a function of the magnetic field inside the dot, and provides oscillation of the magnetization as a function of the chemical potential energy. The magnetic field non-uniformity broadens the shape of the magnetization. The Zeeman spin splitting produces additional peaks on the magnetization.

Magnetic Properties of $GdBa_2Cu_3O_{7-y}$ Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process (종자 결정 성장법으로 제조된 $GdBa_2Cu_3O_{7-y}$ 벌크 초전도체의 자기적 특성)

  • Kim, K.M.;Park, S.D.;Jun, B.H.;Ko, T.K.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed $GdBa_2Cu_3O_{7-y}$ (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature ($T_{max}$), a temperature for crystal growth ($T_G$) and a cooling rate ($R_G$) through a peritectic temperature ($T_P$) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature ($T_c$) and critical current density ($J_c$) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The $T_c$ of a TSMG processed Gd123 sample was 92.5 K and the $J_c$ at 77 K and 0 T was approximately $50kA/cm^2$. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

Concept and Model of Energy Harvesting using Eddy Current (와전류를 이용한 에너지 포집의 개념과 모델)

  • Han, Ji-Hoon;Park, Sung-Keun;Ju, Gwang-Il;Lim, Seung-Hyun;Oh, Il-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3506-3511
    • /
    • 2007
  • The energy harvesting using smart materials has been extensively investigated to supply electric power to wireless sensor systems. In this paper, the energy harvesting using eddy current was studied with the integrated magnetic cantilever beam system. If a large conductive metal plate moves through a magnetic field which intersects perpendicularly to the sheet, the magnetic field will induce small rings of current which will actually create internal magnetic fields opposing the change. This eddy current that was induced in the coiled conductive sheet from the mechanical vibration was converted to chemical energy by charging batteries. The experimental results show that the eddy current generated the electric power up to max 31.2mW. Additionally the vibration reduction of the mechanical cantilever beam was observed by the energy dissipation in the electro-magnetic coupled system. The present result shows that the vibration level of the first natural frequency was reduced up to 7.7dB

  • PDF

Analysis of Magnetic Arc Reduction of Relay Contacts (릴레이 접점의 자기적 아크 저감 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.234-240
    • /
    • 2019
  • In this work, the magnetic arc reduction phenomena encountered in AC relay contacts were analyzed. To this end, arc duration, instantaneous voltage, and current changes due to changes in the magnetic field were observed. The arc generated at the contact point was affected by the magnitude of the applied magnetic field; the voltage and current waveforms rapidly intersected, resulting in a decrease in arc duration and arc energy. Furthermore, the orientation of the N pole of the magnetic field was found to play a role in the effectiveness of potential arc prevention.

A Comparison of Energy Loss Characteristics between Radial and Axial Magnetic Field Type Vacuum Switches (대전력 펄스용 횡자계형 및 종자계형 진공스위치의 에너지 손실 특성 비교)

  • 이태호;허창수;이홍식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Crowbar system Vacuum switches, widely used In a pulsed power system, could use the magnetic force to prevent the electrode damage. Vacuum switches using the magnetic forces are classified roughly into RMF(Radial Magnetic Field) and AMF(Axial Magnetic Field) type. The RMF type switches restrain a main electrode from aging due to high temperature and high density arc by rotating the arc which is driven by the Lorenz force. The AMF type switches generate axial magnetic field which decreases the electrode damage by diffusing arc. In this paper, we present the energy loss characteristics of both RMF and AMF type switches which are made of CuCr(75:25 wt%) electrodes. The time-dependent dynamic arc resistance of high-current pulsed discharge in a high vacuum chamber(~10$^{-6}$ Torr). which occurs in RMF and AMF type switches, was obtained by solving the circuit equation using the measured values of the arc voltage and current. In addition, we compared energy loss characteristics of both switches. Based on our results, it was found that the arc voltage and the energy loss of an AMF type switch are lower than a RMF type switch.

Magnetic levitation force and trapped magnetic field of top-seeded melt-processed YBCO superconductors with multiseeding (다중 종자결정성장법으로 제조한 YBCO 초전도체의 자기 부상력과 포획자력)

  • Kim, Chan-Joong;Jee, Young-A;Kim, Ho-Jin;Joo, Jin-Ho;Han, Young-Hee;Kim, Sang-Jun;Hong, Gye-Won
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.358-362
    • /
    • 1999
  • Magnetic levitation forces and trapped magnetic fields of top-seeded melt growth-processed YBCO superconductors with multiseeding were studied. The number of seeds was varied from one to six. The surface magnetic field of the prepared YBCO samples was dependent on the number of the seeds. The trapped magnetic field of the top surface decreased with increasing the number of the seed. Particularly, it drastically decreased at the YBCO grain boundary, probably due to the weak rink nature of the boundary. The magnetic levitation force also decreased with increasing the number of the seeds, similar to the variation of the surface magnetic field.

  • PDF

A Study on the Effects of Magnetic Field and BEP on Hyperlipidemia and Enzymatic Activities in Rats (자기장(磁氣場) 및 BEP 조사(照射)가 식이성(食餌性) 고지혈증(高脂血症)이 유발(誘發)된 흰쥐에 미치는 영향(影響)에 대(對)한 연구(硏究))

  • Koh, Kwang-chan;Lee, Cheol-wan
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.559-592
    • /
    • 1999
  • It has been known that Ki(氣) energy is very effective on many adult diseases. Oriental Medicine has acknowledged Ki as an existing reality and investigated its effects on the body. However, the existence of Ki has not been fully explained. In order to find a conclusive evidence on the existence of Ki, this experiment was done to study the mutual relationship of Ki with a magnetic field and BEP (biological energy projector). The BEP apparatus was irradiated under the magnetic field on rats in the hyperlipidemic induced state. Following criterias were measured in this experiment: weight change, weight of the visceral organs, serum, hepatic lipid peroxide, bleeding time, tissue factor, and etc. The following results were obtained in this study: 1. The weight of rat significantly decreased in the magnetic field treated group and radically reduced in the group treated with both magnetic field and BEP. 2. The weight of liver, heart, and kidney increased in both the magnetic field treated group and magnetic field+BEP group compared to the normal group, but decreased in comparison to the control group. No changes were witnessed in the weight of spleen. 3. Serum and hepatic total cholesterol, total lipid, and lipid peroxide level significantly decreased in both magnetic field treated group and magnetic field+BEP treated group, while lipase activity has increased noticeably. 4. Serum HDL showed a significant increase in both magnetic field treated group and magnetic field+BEP treated group compared to the control group, while LDL and VLDL level decreased significantly. 5. A bleeding time significantly increased in both magnetic field treated group and magnetic field+BEP treated group compared to the control group. A tissue factor value of the lung decreased in the magnetic field treated group and magnetic field+BEP treated groups while increased in the control group. 6. Serum and hepatic lipid peroxide and glutathione level were significantly decreased in the magnetic field treated group and magnetic field+BEP treated group, while hepatic glutathione level was significantly increased compared to the control group. 7. A significant increase was found in the serum hydroxyl radical and SOD activity in the dietary hyperlipidemic rats, and significant decrease was found in the serum lipid peroxide content and superoxidase activity. 8. Hepatic cytosolic enzyme xanthine oxidase and aldehyde oxidase showed a significant decrease in the magnetic field treated group and magnetic field+BEP treated group. Through the above experimental results, one can suggest that the magnetic field with BEP can suppress hyperlipidemia and boost lipid metabolism and restructuring a lipid in liver, which increases the function of liver. To conclude, BEP is considered to show more potent effects under the exposure of magnetic field because magnetic field seems to increase the flow of Ki in the body.

  • PDF

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

LARGE EDDY SIMULATION OF VORTEXING FLOW IN THE MOLD WITH DC MAGNETIC FIELD

  • Zhongdong Qian;Yulin Wu
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Large eddy simulation of vortexing flow of molten steel in the continuous casting mold with and without DC magnetic field was conducted. The influence of the position of magnetic field to the residence time and depth of the vortex was analyzed. The mechanism of the influence of magnetic field to the vortexing flow was found. The computational results show that the vortexing flow is the result of shearing of the two un-symmetric surface flows from the mold narrow faces when they meet adjacent to the SEN; the un-symmetric flow for turbulent vortex is caused by turbulent energy of the fluid and that for biased vortex is caused by biased flow and the turbulent energy of fluid; with the moving of the magnetic field from the centerline of the outlet of the SEN to the free surface, the surface velocity is decreased gradually and the depth of the turbulent vortex and the biased vortex is decreased, the residence time is increased with the magnetic field moves from DL=120mm to DL=60mm and then decreased; the turbulent vortex and the biased vortex can be eliminated when the magnetic field is located at the free surface.

Development of Transformation-Core for Magnetic Field in Switchgear

  • Gwan-hyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.316-321
    • /
    • 2023
  • In this study, we developed a conversion core that produces power by utilizing the unused magnetic field in a switchboard. The conversion core makes it possible to utilize power that is normally wasted. The conversion core is composed of a core, filter, and battery. A prototype was installed in a switchboard to conduct tests on the output, battery storage, and output boosting of multiple batteries. Energy was harvested from the magnetic field generated by a busbar of the switchboard, and the power conversion ratio of the core yielded 1.08-1.01 mW per 1 A of bus current. Supplying this technology to the market after further R&D and commercialization is expected to greatly assist in the dissemination of energy harvesting, which has not yet spread widely to the general public.