• Title/Summary/Keyword: magnetic field effect

Search Result 1,133, Processing Time 0.032 seconds

Analysis of Magnetic Field by Catenary Current and Magnetic Field Mitigation in Electric Railway using Passive Loop (가선전류에 의한 자기장 형성과 수동루프를 이용한 전기철도차량내 자기장 유도 감쇄 분석)

  • Yoon, Yeo-Kun;Nah, Wan-Soo;Han, In-Su;Lee, Tae-Hyung;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.384-389
    • /
    • 2011
  • The electric railway cars are operated by high voltage supply through the catenary wire. Also, numerous electric equipments operated by electric signal are distributed in the electric railway cars. Such electric equipments are exposed to EMI/EMC problems, and there is the possibility that the magnetic field due to the catenary wire current takes effect on the electromagnetic field in the electric railway cars which move under the catenary wire. There is the possibility that the electromagnetic interference generates in view of the operation of many electric equipments in the electric railway cars. There is the possibility that the communication device faults generate, and that the hazards on the human beings generate. In this paper, we predict the magnetic field around the catenary wire, and obtain the exact magnetic field distribution by comparing the analytic results and the numerical results. Finally, we confirmed the possibility of the passive loop mitigation by comparing the analytic results and the numerical results through the passive loop mitigation technique.

  • PDF

Effect of Number of Turns of Pancake Windings on Central Magnetic Field of the HTS Magnet (팬케이크 권선의 권선수가 고온초전도 마그넷의 중심자장에 미치는 영향)

  • Kang, Myung-Hun;Lee, Kwang-Youn;Lee, Yong-Seok;Cha, Guee-Soo;Lee, Hee-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.107-109
    • /
    • 2007
  • Pancake windings have merits that are easier to make high field magnets and replace windings when an accident happens and windings are aged. The current of the whole magnet consisted of windings connected in series was limited by the minimum current of the top and bottom pancake windings where maximum perpendicular magnetic field was applied. This paper propose a optimal design of a HTS magnet excited by a single source, where evolution strategy was adopted for optimal design algorithm. A magnet consisted of 8 BSCCO pancakes was chosen to prove the effectiveness of this optimal design method. Magnetic field at the center of a magnet was chosen as the object function and it was used maximized. Results of the optimal design shows that the increment of the number of turns of the pancake winding make the magnetic field of the center of the magnet increase but the current of the winding decrease for the larger perpendicular magnetic field.

  • PDF

The Influence of an Orthogonal Field on Deperming Performance (직교자계가 디펌성능에 미치는 영향)

  • Kim, Ki-Chan;Kim, Young-Hak;Shin, Kwang-Ho;Kim, Hwi-Seok;Yoon, Kwan-Seob;Yang, Chang-Sub
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.359-363
    • /
    • 2011
  • An orthogonal magnetic field is often used for a military vessel in the deperm process such as Flash D deperm protocol and Anhysteretic deperm protocol. The effect of the orthogonal magnetic field on a deperm performance was investigated for a sample with strain-induced magnetization and field-induced magnetization given to different direction. A 70mm wide, 110mm long and 0.25mm thick rectangular steel plate was bent to have U-shape and to generate a strong strain on the bottom region of U-shaped steel plate. Field-induced magnetization was attached by NdFeB permanent magnet. Demagnetization was performed by applying magnetic field with a step decrement from the first field(the first shot) under the action of DC bias field.

Experiment on Small A.C. MHD Power Generator (소용량 교류 MHD발전기에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.25 no.5
    • /
    • pp.79-87
    • /
    • 1976
  • This paper is to investigate the A.C generation of MHD engine, converting directly the kinetic energy of conductive gas in high temperature to electric power by the effect of magnetic field. It is known that there are at least two kinds of method in A.C MHD power generation; one, by sending stationary plasma flow in an alternating or rotating magnetic field and the other, by transmission of pulse type plasma flow in uniform and constant magnetic field, former method is adopted here. In order to raise the total efficiency of close cycle in combination with nuclear power and MHD genertaion, an argon plasma jet is utilized as heat source, which is not mixed with the seed material, and the design data are obtained for A.C MHD generation in small capacity, but induced voltage and power output have the maximum values, 15 voltages and 7.5W respectively due to plasma flow with low conductivity and weak magnetic field.

  • PDF

Temperature Dependence of Magnetostriction in Terfenol-D (Terfenol-D의 온도에 따른 자기변형 특성)

  • 박영우;금기경;한승현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.275-278
    • /
    • 2002
  • The performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. This paper presents an experimental investigation of the temperature effect on the magnetostriction in Terfenol-D. The effects of both prestress and magnetic field on the magnetostriction are also presented. Experimental results show that both the prestress and magnetic field on the magnetostriction are significant. It is also observed that the displacement decreases slightly to around 40$^{\circ}C$, then increases to 80$^{\circ}C$. It indicates that the displacement decreases due to the reduced magnetization, and increases due to the thermal expansion, as the temperature increases. It means that the reduced magnetization affects more in the displacement change up to 40$^{\circ}C$, and the thermal expansion affects more in the displacement change beyond 40$^{\circ}C$.

  • PDF

The Electromagnetic Repulsion Force Analysis of Multipolar Axial Magnetic Field type Electrodes for Vacuum Interrupter (진공인터럽터용 다극 종자계전극의 전자반발력 해석)

  • Kim, Sung-Il;Park, Hong-Tae;Ahn, Hee-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.95-97
    • /
    • 1999
  • This paper describes electromagnetic repulsion force of multipolar axial magnetic field type electrodes for vacuum interrupter used in vacuum circuit breaker. It was distinguished that repulsion force of multipolar axial magnetic field type electrode in consideration of eddy current effect between upper electrode and lower electrode by finite element method. And it was found out that suitable contact weight of multipolar axial magnetic field type electrode for vacuum circuit breaker from repulsion force analysis results by finite element method.

  • PDF

Electrical Parameter Evaluation of 1 MW HTS Motor via Magnetically Stored Energy Calculation

  • Baik, Seung-Kyu;Kwon, Young-Kil;Kim, Ho-Min;Lee, Jae-Deuk;Kim, Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.13-16
    • /
    • 2010
  • The superconducting synchronous motor or generator mostly has high permeability iron only around outer yoke portion. Therefore, if excitation voltage (Back E.M.F) is calculated from 2 dimensional magnetic field distributions, it can be largely different from actual value due to additional voltage originated from end coils. In order to calculate the excitation voltage more accurately, 3 dimensional magnetic field calculation is necessary for including the end coil effect from large air-gap structure. The excitation voltage can be calculated by stator (armature) coil linkage flux originated from rotor (field) coil excitation, but it is difficult to calculate the flux linkage exactly because of complicated structure of the stator coil. This paper shows a method to calculate the excitation voltage from 3 dimensional magnetic energy that can be calculated directly from volume integration of magnetic flux density and field intensity scalar product through FEM (Finite Element Method) analysis software.

Effects of Electric and Magnetic Fields to Seed Germination and Its Early Growth (전계와 자계가 식물씨앗의 발아와 초기생장에 미치는 영향)

  • Moon, Jae-Duk;Kyon, Nam-Yul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.328-333
    • /
    • 2006
  • All the plants on earth live under an electric and magnetic field because the earth is a magnet and there is an electric field between the charged cloud and the ground. It has been reported that electromagnetic fields influence both the activation of ions and polarization of dipoles in living cells of seeds and plants, though the mechanism of these actions is still poorly understood. In this paper, the effects of the electric and magnetic fields and exposure times to the germination of several vegetable seeds and its early growth have been investigated experimentally to find out the feasibility of a plant factory for mass production of clean and unpolluted vegetables. The germination rate and the growth rate of some seeds under the fields exposed were analysed and compared with those of unexposed ones. It is found that the germination rate and its early growth rate of exposed seeds under the fields were accelerated about 1.1-1.4 and 1.7-2.2 times in maximum compared with those of unexposed ones. But, however, an inhibitory effect on germination and plant early growth were shown in the case of the higher electric and magnetic fields.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Three-fold Symmetry Effect on Mn2+ Centers in a LiNbO3 Crystal

  • Park, II-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • Spin Hamiltonian for the paramagnetic center with a three-fold symmetry and high spin ($S{\geq}2$) multiplicity should contain the fourth order zero-field splitting (ZFS) terms. Electron magnetic resonance transition lines of the center with S = 5/2 are expected to split in a pair when the magnetic field is applied off the principal axes of ZFS, while they are superimposed when the magnetic field is applied parallel to the principal axes of ZFS. In this study we report that the transition lines of $Mn^{2+}$ centers at the three-fold symmetric sites in $LiNbO_3$, chemically equivalent but physically different, split in two due to the nonzero fourth order ZFS term.