• Title/Summary/Keyword: magnetic field calculation

Search Result 266, Processing Time 0.033 seconds

자기벡터포텐셜을 이용한 3차원 전자력 계산 (Electromagnetic Force Calculation using Magnetic Vector Potentials in 3-D Problems)

  • 양재진;이복용;이병환;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.153-155
    • /
    • 1994
  • Electric machines such as motors which have moving parts are desgined for producing mechanical force or torque. The accurate calculation of electromagnetic force and torque is important in the design these machines, Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. In the problems including current source, magnetic vector potentials(MVP) have mostly been used as an unknown variables for field analysis by numerical method; e, g. FEM. This paper, thus, introduces both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetrical FEM. In each case, the calculated force are tabulated for several mesh schemes.

  • PDF

전이원소착물의 자기모멘트의 계산 (제1보). 일그러진 팔면체 $[Ti(III)A_3B_3]$형태 착물의 자기모멘트 [A 및 B = Cl, O, N, Br] (Calculation of the Magnetic Moments for Transition Metal Complexes (I). The Magnetic Moments for Distorted Octahedral $[Ti(III)A_3B_3]$ Type Complexes [A and B = Cl, O, N, Br])

  • 안상운;박의서;박병빈
    • 대한화학회지
    • /
    • 제24권2호
    • /
    • pp.91-100
    • /
    • 1980
  • 축방향대칭을 갖는 팔면체 $[Ti(III)A_3B_3]$형태 착물의 자기모멘트를 계산하는 식을 유도하여 distortion parameter$({\delta})$, 스핀-궤도 상호작용상수$({\zeta}')$ 및 orbital reduction factor의 실험치를 사용하여 이들 착물의 자기모멘트를 계산하였다. 축방향으로 일그러진 팔면체 $[Ti(III)A_3B_3]$형태 착물의 계산한 자기모멘트가 실험치와 비교적 일치하였다. 팔면체로부터 축방향 일그러짐이 커짐에 따라 그리고 orbital reduction factor가 감소함에 따라 계산한 자기모멘트의 값이 크게 감소하였다. 축방향대칭보다 낮은 리간드장으로 일그러진 팔면체착물의 자기모멘트를 계산하는 방법을 발전시켰으며 계산한 자기모멘트를 기초로 하여 일그러진 팔면체 $[Ti(III)A_3B_3]$형태 착물의 구조를 논의하였다.

  • PDF

전자장 해석을 통한 매트릭스형 한류기용 리액터 설계 및 특성해석 (Design and Characterization of a Reactor for Matrix Type SFCLs Using Electromagnetic Field Analysis)

  • 정동철;윤창훈;최효상
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.227-230
    • /
    • 2009
  • In this paper, we performed the optimum design of reactors for matrix-type superconducting-fault current limiters (SFCLs), using electromagnetic analysis tools. We decided a optimun position within a reactor for superconducting elements of current-limiting parts and trigger parts from the calculation of magnetic flux internsity for reactor structures. Also we decided effective distance length between two reactors through the analysis of the distribution of magnetic field, according to distance lengths between them. We designed and characterized matrix-type SFCLs, based on our optimum design of a reactor. We confirmed uniform distribution of a fault current, resulted from the improvement of simultaneous quench characteristics within our matrix-type SFCL.

자왜재료를 이용한 선형 작동기의 유한요소 해석 (Finite Element Analysis of Magnetostrictive Linear Actuator)

  • 김윤창;김재환
    • 한국소음진동공학회논문집
    • /
    • 제17권4호
    • /
    • pp.356-362
    • /
    • 2007
  • Magnetostrictive materials have been used for linear actuators due to its large strain, large force output with moderate frequency band in the presence of magnetic field. However their performance analysis is difficult because of nonlinear material behaviors in terms of coupled strain-magnetic field dependence, nonlinear permeability, pre-stress dependence and hysteresis. This paper presents a finite element analysis technique for magnetostrictive linear actuator. To deal with coupled problems and nonlinear behaviors, a simple finite element approach is proposed, which is based on separate magnetic field calculation and displacement simulation. The finite element formulation and an in-house program development are illustrated, and a simulation model is made for a magnetostrictive linear actuator. The fabrication and performance test of the linear actuator are explained, and the performance comparison with simulation result is shown. Since this approach is simple, it can be applied for analyzing magnetostrictive underwater projectors and ultrasonic transducers.

등가 자기회로법을 이용한 Claw-pole type generator의 특성해석 (An Application of Equivalent Magnetic Circuit method to the analysis of Claw-pole type generator)

  • 정재우;권순오;이상호;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.120-122
    • /
    • 2005
  • Magnetic field analysis of claw-pole type generator using equivalent circuit is presented in this paper. On the basis of 3D geometry and flux paths, equivalent magnetic circuit is designed and field analysis is performed by solving the circuit. Non-linear characteristic of material is considered for precise analysis results. 3D FEA is performed to verify analysis results, and flux densities in rotor and stator regions are compared. Calculated no-load back emf for field input voltage and speed are verified by experiment. Comparing to 3D FEA, presented method provides precise results with instant calculation time.

  • PDF

3상 전력선로하의 전계 및 자속밀도 계산 (Calculation of Electric Field and Magnetic Flux Density under 3-Phase Power Lines)

  • 이영식;박정은;노일수;강대하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.439-441
    • /
    • 2003
  • In this study the formula of electro magnetic fields under 3-phase power lines with vertical or horizontal line-configurations were deduced and the effect of the earth was considered in the formula. Using the formula the electric field and the magnetic flux density under distribution and transmission lines constucted currently in our country were calculated and the components of each field were investigated with horizontal distance from tower and height above the earth.

  • PDF

공진형 무선전력전송 대역의 100kHz~10MHz 자기장에 의한 인체유도전류계산과 전자기장 인체보호기준 분석 (Calculation of Induced Current in the Human Body by Magnetic Field in the 100kHz~10MHz Resonant WPT Frequency Range and Analysis of EMF Guideline)

  • 신한수;송혜진;변진규
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.110-119
    • /
    • 2013
  • As the technologies such as middle-range resonant WPT (wireless power transfer) advance that utilizes medium and low-frequency magnetic field, the importance of safety of such magnetic field is growing. The research on the effect of electromagnetic field on the human body has been mainly done on the GHz range of mobile phones, or 50~60Hz range of electric power systems. However, there has been relatively few works on the 100kHz~10MHz range used in the resonant wireless power transfer. Since there is a difference in the limiting value of magnetic field between widely used ICNIRP EMF guideline and IEEE C95.1 standard, there can be possible confusion when establishing EMF (Electromagnetic Field) standard on the wireless power transfer device in the future. In this paper, the induced current in the human body, which is the basic restriction of the EMF guideline, is calculated using Quasi-static FDTD method when 3D high-resolution human model is exposed to the 100kHz~10MHz magnetic field. Using this result, the feasibility of the magnetic field reference level in the ICNIRP guideline is analyzed.

적분법을 이용한 전력용 변압기의 손실 해석법 연구 (Investigation of Loss Analysis Method using Integral Equation Method for Power Transformers)

  • 배병현;이승욱;최종웅;박석원
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.489-494
    • /
    • 2013
  • In analysis of power transformer loss using calculation of magnetic field, Finite element method is commonly used. When using this method, calculation of magnetic field needs the very large number of elements and the performance of common work station is not sufficient to calculate the magnetic fields. In addition, the definition of boundary conditions may arise. However, When using Integral equation method, only ferromagnetic materials need to be modeled, since the domain is infinite. All the space in which the primary and secondary sources exist is regarded as free(${\mu}={\mu}_0$).

히스테리시스 특성을 고려한 전자계의 유한 요소 해석 (Finite Element Analysis of Electromagnetic Systems Considering Hysteresis Characteristics)

  • 김홍규;홍선기;정현교
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권3호
    • /
    • pp.118-123
    • /
    • 1999
  • This paper describes the finite element procedure including the magnetic hysteresis phenomena. The magnetization-dependent Preisach model is employed to simulate the magnetic hysteresis and applied to each elements. Magnetization is calculated by the Fibonacci search method for the applied field in the implementation of the magnetization-dependent model. This can calculate the magnetization very accurately with small iteration numbers. The magnetic field intensity and the magnetization corresponding to the magnetic flux density obtained by the finite element analysis(FEA) are computed at the same time under the condition that these balues must satisfy the constitutive equation. In order to reduce the total calculation cost, pseudo-permeability is used for the input for the FEA. It is found that the presented method is very useful in combining the hysteresis model with the finite element method.

  • PDF

The Limit of Magnetic Helicity Estimation by a Footpoint Tracking Method during a Flux Emergence

  • Choe, Gwang Son;Yi, Sibaek;Jang, Minhwan;Jun, Hongdal;Song, Inhyuk
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.58.2-58.2
    • /
    • 2018
  • Theoretically, the magnetic helicity transport flux through the solar surface into the upper atmosphere can be estimated indefinitely precisely by magnetic field footpoint tracking if the observational resolution is infinitely fine, even with magnetic flux emergence or submergence. In reality, the temporal and spatial resolutions of observations are limited. When magnetic flux emerging or submerging, the footpoint velocity goes to infinity and the normal magnetic field vanishes at the polarity inversion line. A finite observational resolution thus generates a blackout area in helicity flux estimation near the polarity inversion line. It is questioned how much magnetic helicity is underestimated with a footpoint tracking method due to the absence of information in the blackout area. We adopt the analytical models of Gold-Hoyle and Lundquist force-free flux ropes and let them emerging from below the solar surface. The observation and the helicity integration can start at different emerging stages of the flux rope, i.e., the photospheric plane initially cuts the flux rope at different levels. We calculate the magnetic helicity of the flux rope below the photospheric level, which is eventually to emerge, except the helicity hidden in the region to be swept by the blackout area with different widths. Our calculation suggests that the error in the integrated helicity flux estimate is about half of the real value or even larger when small scale magnetic structures emerge into the solar atmosphere.

  • PDF