• Title/Summary/Keyword: magnetic field calculation

Search Result 266, Processing Time 0.035 seconds

Analysis of a PM Motor Drive System by a Coupled Method with MATLAB and FEM

  • Ishikawa T.;Sunaga T.;Nakamura S.;Mori D.;Hashimoto S.;Matsunami M.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.229-232
    • /
    • 2005
  • Finite element method (FEM) is a very powerful tool for the calculation of magnetic field of electromagnetic devices. MATLAB/Simulink is also well known as a very useful tool for control systems. This paper proposes a very promising method, where the FEM is coupled with MATLAB. We apply this method to analyze a permanent magnet (PM) motor drive system, and compare with results using MATLAB only.

ELF Magnetic Field Calculation of High Speed Railway According to Condition of Train Operation (열차 운행조건에 따른 고속철도 주변의 극저주파 자기장 예측계산)

  • Myung, Sung-Ho;Lee, Jae-Bok;Kim, Jeom-Sik;Kim, Eung-Sik;Lee, Jong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.231-233
    • /
    • 2001
  • 본 논문에서는 고속철도 급전계통 주변에서 여러가지 운전 조건하의 자계를 예측 계산하였다. 여기에서는 자계해석 방법으로 Biot Savart's law에 기반을 둔 해석식을 사용하였으며 대지 귀환회로를 계산과정에 포함하여 실제에 가까운 모델링을 하였다. 계산결과 열차 주변 지상 1m 부근의 플랫폼에서 자계의 크기그하였으며, 국제비전리방사보호위원회(ICNIRP)의 자기장 권고기준과 비교하여 평가하였다.

  • PDF

Interrupting Performance of 7.2kV $SF_6$ Gas Electromagnetic Contactor Using Rotary Arc Principle (7.2kV급 로타리아크 소호방식을 이용한 $SF_6$가스 전자접촉기의 차단특성)

  • Chang, K.C.;Chong, J.K.;Shin, Y.J.;Kim, J.K.;Kim, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.77-79
    • /
    • 1996
  • The model interrupters of $SF_6$ gas electromagnetic contactor whose ratings are 7.2kV, 4.0kA have been designed and manufactured on the basis of theoretical and computational analysis for its development. The eddy current analysis, the magnetic field analysis and the calculation of the rotational force on arcs have been conducted using FLUX2D package. The short circuit current interrupting tests have been conducted for the model interrupters using the simplified synthetic testing facility in KERI. The results show that the model interrupters have sufficient interrupting capability and the new design concept is prefer for good interrupting performance.

  • PDF

A Three-Phase 618 Structure SRM (3상 6/8극 SRM)

  • Lee Ju-Hyun;Lee Dong-Hee;Chen Hao;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.254-258
    • /
    • 2004
  • A three-phase 6/8 structure SRM (switched reluctance motor), the design and analysis of the motor are described. The range of the stator pole arc factor and the rotor pole arc factor of the motor are analyzed in the linear region. The optimum range of the stator pole arc factor and the turn-off angle of the main switches in the power converter are given with the 2-D finite element electro-magnetic field calculation of the motor and the nonlinear simulation. Test results of the prototype developed are discussed.

  • PDF

Simplified 3D Finite Element Analysis of Linear Inductor Motor for Integrated Magnetic Suspension/Propulsion Applications (자기부상 및 추진 일체형 리니어 인덕터 모터의 간이형 3차원 유한요소해석)

  • Jeong, Sang-Sub;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.371-379
    • /
    • 2000
  • The 4-pole linear homopolar synchronous motor (LHSM), so called linear inductor motor, is composed of the figure-of-eight shaped 3-phase armature windings, DC field windings, and the segmented secondary with the transverse bar track. To reduce the calculation time, the simplified 3D finite element model with equivalent reluctance and/or permanent magnet is presented. To obtain a clear understanding, propriety and usefulness of the developed model, we compare with the results of simplified 3D FEA, general 3D FEA and test. Consequently, the results of simplified and 3D FEM analysis are nearly identical, but much larger than that of static test at d-axis armature excitation. Therefore the improved FEA model, such as full model with half slot, is needed for the precise analysis.

  • PDF

Characteristic Analysis of a Three Phase HTS Transformer (3상 고온초전도 변압기의 특성해석)

  • Lee, S.W.;Lee, H.J.;Cha, G.S.;Lee, J.K.;Choi, K.D.;Ryu, K.W.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.720-722
    • /
    • 2001
  • The high temperature superconductor transformer gains interests from the industries. This paper examined characteristics of the laboratory scale three phase HTS transformer and Brandt equation is used to calculate the loss by perpendicular magnetic field in transformer winding. To estimate the performance of the three phase HTS transformer no load characteristics, short circuit characteristics are calculated by using finite element method. Transient characteristics of sudden short circuit during full load operation have been examined. Effect of the resistance growth in the HTS wire from the quench of the wire is included in the calculation.

  • PDF

3-Dimensional Design of Gradient Coils for Magnetic Resonance Imaging (자기공명영상촬영용 경사자계코일의 3차원설계)

  • Ryu, Yeun-Chul;Hyun, Jung-Ho;Lee, Heung-K.;Oh, Chang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.235-237
    • /
    • 2006
  • In this paper, the previous 2-D gradient coil design method using loop current elements is extended to 3-D or multi-layer structures which is useful for various MRI applications including MR microscopic imaging where relatively large space may be available for the implementation of the gradient coils. Either the power consumption or the stored energy (thus, inductance), or the combination of the two can be minimized with a set of chosen target field constraints. Complete 3-D design equations for the optimization as well as inductance or resistance calculation are derived. An effective coil shape correction method for a curved current pattern is also developed. The design method can also be easily extended to the active shielding structure.

  • PDF

Collimation of cesium atomic beam using laser light pressure (레이저 광압을 이용한 세슘 원자빔의 집속)

  • 박상언
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.227-231
    • /
    • 2000
  • Thermal cesium atomic beam was collimated by transversely cooling of atoms, for which circularly polarized ($\sigma^+$ and $\sigma^-$ polarized) laser light was illuminated to the atomic beam from two perpendicular directions. As a result, the temperature corresponding to the transverse velocity component could be decreased from 430 mK to 60 11K. In addition, the spatial atomic distribution was observed according to the power difference of the two laser beams and the magnetic field applied, and the result was qualitatively coincided with the calculation result by the Doppler cooling theory. heory.

  • PDF

Design and Drive of 3-phase 6/8 SRM (3상 6/8극 SRM의 설계 및 운전 특성)

  • Hao Chen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.48-55
    • /
    • 2003
  • The design and analysis of a three-phase 6/8 structure SRM(switched reluctance motor) art described. The range of the stator ole arc and the rotor pole arc of the motor we analyzed in the linear region. The optimum range of the stator pole arc and the turn-off angle of the main switches in the power converter are given with the 2-D finite element electro-magnetic field calculation of the motor and the nonlinear simulation. Test results of the prototype are discussed. This type is good for high efficiency drive because the drive circuit is simple and current density and copper loss of the winding are law.

Analysis of AC Losses in HIS Transformer with Double Pancake Windings (초전도 변압기 교류 손실 해석)

  • Kim Jong-Tae;Kim Woo-Seok;Kim Sung-Hoon;Choi Kyeong-Dal;Joo Hyeong-Gil;Hong Gye-Won;Han Jin-Ho;Lee Hee-Gyoun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • AC loss is one of the important parameters in HTS (High Temperature Superconducting) AC devices. Among the HTS AC power devices, the transformer is the essential part in the electrical power system. But unfortunately, the transformer is the worst HTS device concerning AC loss because of very large magnetization loss due to high magnetic field applied to the HTS wire. We calculated the magnetization losses in HTS pancake windings for transformer according to the operating temperature. Two kinds of arrangement of HTS pancake windings were adopted for calculation of AC losses of a shell type transformer, and the analysis results were presented and discussed.