• Title/Summary/Keyword: magnetic domains

Search Result 101, Processing Time 0.02 seconds

Expression and Preparation of Periostin FAS1 Domains for NMR Structure Determination

  • Yun, Hyosuk;Kim, Jae Il;Lee, Chul Won
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • Periostin, a component of extracellular matrix (ECM) protein, is produced and secreted by the fibroblasts that are involved in chronic allergic inflammation diseases and various types of human cancers. Periostin protein is composed of multiple domains including four FAS1 domains which play important roles in cell adhesion and tumor metastasis by interacting with integrins. In spite of their important biological role, the structural information of periosin FAS1 domains was not revealed yet. Recently we systemically prepared various constructs of the FAS1 domains and tried to express them in E. coli. Of them, only single FAS1-II and -IV domains were highly soluble. Circular dichroism (CD) and nuclear magnetic resonance (NMR) studies revealed that the FAS1-IV domain might be suitable for three-dimensional structure determination using NMR spectroscopy.

Ferromagnetic Domain Behaviors in Mn doped ZnO Film

  • Soundararajan, Devaraj;Santoyo-Salazar, Jaime;Ko, Jang-Myoun;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.216-219
    • /
    • 2011
  • Mn doped ZnO films were prepared on Si (100) substrates using sol-gel method. The prepared films were annealed at $550^{\circ}C$ for decomposition and oxidation of the precursors. XRD analysis revealed the presence of ZnMnO hexagonal wurtzite phase along with the presence of small quantity of $ZnMn_2O_3$ secondary phase and poor crystalline nature. The 2D, 3D views of magnetic domains and domain profiles were obtained using magnetic force microscopy at room temperature. Rectangular shaped domains with an average size of 4.16 nm were observed. Magnetic moment measurement as a function of magnetic field was measured using superconducting quantum interference device (SQUID) magnetometry at room temperature. The result showed the ferromagnetic hysteresis loop with a curie temperature higher than 300 K.

Observation of the Domain Structures in Soft Magnetic (Fe97A13)85N15/Al2O3 Multilayers

  • Stobiecki, T.;Zoladz, M.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • The longitudinal magnetooptical Kerr effect was used to analyse magnetic domains in soft magnetic ${(Fe_{97}A1_3)}_{85}N_{15}$/$Al_{2}O_{3}$ multilayers in order to get microscopic understanding of interlayer exchange coupling. The measuring system consists of a Kerr microscope, a CCIR camera (with an 8-bit framegrabber), 16 bit digital camera and computer system for real-time image processing and to control external magnetic field and cameras. The strength of ferromagnetic (EM) coupling as a function of the spacer thickness of $Al_2O_3$ was investigated. It was found that strong FM-coupling, strong uniaxial anisotropy and coherent rotation of the magnetization have been observed for the spacer thickness in the range of 0.2 nm $\leq$ t $\leq$ 1 m, however, weak FM-coupling, patch domains and $360^{\circ}$-walls occur for the spacer thickness of t = 2.5 nm. At a spacer thickness of t $\geq$ 5 nm transition takes place from weak FM-coupling to the decoupled state where complex interlayer interactions and different types of the domain walls were observed.

Study on the Surface Magnetic Domain Structure of Thin-Gauged 3% Si-Fe Strips using Scanning Electron Microscopy with Polarization Analysis

  • Chai, K.H.;Heo, N.-H.;Na, J.g.;Lee, S.R.;Woo, j.s.
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.44-48
    • /
    • 1998
  • Scanning Electron Microscopy with Polarization Analysis (SEMPA) was used to image the surface magnetic domain structure of the 100 ${\mu}{\textrm}{m}$ thick 3% Si-Fe sheet. The thin-gauged 3% Si-Fe strips with magnetic induction ($B_{10}$) from 1.98 to 1.57 Tesla were prepared via conventional metallurgical processes including melting, hot-and cold-rolling, intermediate annealing and final annealing. Using SEMPA, it was observed that the $B_{10}$ (1.98 T) Tesla sample was almost composed of 180$^{\circ}$ stripe domains which are parallel to rolling direction. On the other hand the 3% Si-Fe sheet with $B_{10}$ (1.57 T) Tesla was composed of large 180$^{\circ}$stripe domains that are slanted about 30$^{\circ}$to the rolling direction and complex magnetic domain structures like tree and zigzag pattern. The 180$^{\circ}$stripe domains, which covered a major part of the sample, had (110)<001> Goss texture parallel to the rolling direction. The domain walls between 180$^{\circ}$stripe domains were the conventional Bloch type walls. On the other hand, the 90$^{\circ}$domains, which covered minor part on edge of the sample, were observed in (200) grains. The domain walls between 90$^{\circ}$domains were the Neel type walls. In high magnification, the elliptical singularity at the Neel walls was clearly observed.

  • PDF

The change of magnetic microstructure with Co-22%Cr film thicknesses (Co-22%Cr 자성합금박막에서 박막두계에 따른 자기미세구조 변화)

  • 송오성
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.261-265
    • /
    • 1998
  • We investigated compositional separation of Co-23%Cr magnetic alloy thin films with varying film thicknesses. Saturation magnetization and magnetic microstructures were investigated using vibrating sample magnetometer (VSM) and scanning probe microscope (SPM), respectively. Saturation magnetization was as 700 emu/cc for films below 50 nm-thick, and changed to 430 emu/cc for the ones above 2000 nm-thick. This may be due to increment of molar volume of Cr-enriched phase as film thickness increases. The surface grain size in AFM (atomic force microscope) measurement becomes larger as film thickness increases. The MFM (magnetic force microscope) reveals that magnetic microstructure is changed from the fine spherical domains to the maze type domains as film thickness increases. We conclude that employing thickness of Co-22%Cr films below 50 nm is favorable for high density recording in order to enhance perpendicular saturation magnetization and SNR (signal to noise ratio).

  • PDF

1H, 15N, and 13C backbone assignments and secondary structure of the cytoplasmic domain A of mannitol trasporter IIMannitol from Thermoanaerobacter Tencongensis phosphotransferase system

  • Lee, Ko-On;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.42-48
    • /
    • 2015
  • The mannitol transporter Enzyme $II^{Mtl}$ of the bacterial phosphotransferase system has two cytoplasmic phosphoryl transfer domains $IIA^{Mtl}$ and $IIB^{Mtl}$. The two domains are linked by a flexible peptide linker in mesophilic bacterial strains, whereas they are expressed as separated domains in thermophilic strains. Here, we carried out backbone assignment of $IIA^{Mtl}$ from thermophilic Thermoanaerobacter Tencongensis using a suite of heteronuclear triple resonance NMR spectroscopy. We have completed 94% of the backbone assignment, and obtained secondary structural information based on torsion angles derived from the chemical shifts. $IIA^{Mtl}$ of Thermoanaerobacter Tencongensis is predicted to have six ${\beta}$ strands and six ${\alpha}$ helices, which is analogous to $IIA^{Mtl}$ of Escherichia coli.

Analysis of the Induction Heating for Moving Inductor Coil

  • Yun J.O.;Yang Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1217-1223
    • /
    • 2006
  • Induction heating is a process that is accompanied with magnetic and thermal situation. This paper presents a simulation of a magneto-thermal coupled problem of an induction heating process for moving inductor coil. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. As the inductor coil moves in the process, solution domains corresponding to inductor changes into those of the air, and the solution domains of air change into those of the inductor. For these reasons, modeling of induction heating process is very difficult with general purpose commercial programs. In this paper, induction heating process for moving coil was simulated with the concept of traveling the position of the heating planes. Finite element program was developed and finite element results were compared with the experimental results.