• Title/Summary/Keyword: magnetic core

Search Result 964, Processing Time 0.035 seconds

400kV-Class Compact High Voltage Pulse Generator Using Magnetic Core Tesla Transformer (자심 테슬라 변압기를 이용한 400kV급 소형 고전압 펄스 발생기 개발)

  • Shin, Jin-Ho;Youn, Dong-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.385-386
    • /
    • 2014
  • 본 논문에서는 자심 테슬라 변압기를 이용한 400kV급 소형 고전압 펄스 발생기를 개발하였다. 테슬라 변압기의 효율 및 출력전압 향상을 위해 4분할 적층 원통형 자심 구조를 새롭게 제안 하였다. 제안 된 자심 구조를 적용하여 테슬라 변압기를 제작 한 결과, 최대 출력전압 425kV, 에너지 변환 효율 50%를 확인하였다.

  • PDF

3-D Topology Optimization of Magneto-Thermal Systems (자계-열계 시스템의 3차원 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.939-941
    • /
    • 2005
  • This research presents a 3D multi-objective approach regarding both magnetic and thermal characteristics associated with design of C-core actuator. The adjoint variable topology sensitivity equations are derived using the continuum method for three dimension. The sensitivity is verified using the Finite Difference Method(FDM). Convection interpolation function is proposed for density method of topologies such that convection term can be taken into consideration for practical design in the process of the optimization.

  • PDF

Finite Element Analysis of Synchronous Reluctance Motor Considering Iron Core Loss (찰손을 고려한 동기형 릴럭턴스 전동기의 유한요소해석)

  • Lee, Jung-Ho;Kim, Jung-Chul;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.55-57
    • /
    • 1998
  • A finite element analysis for a synchronous reluctance motor (SynRM) is presented with emphasis on the effect of saturation and iron losses. Preisachs model, which allows accurate prediction of iron losses, is adopted in this procedure to provide a nonlinear solution. This technique provide significant properties of proposed SynRM under the magnetic saturation and iron losses effect.

  • PDF

Flying-Capacitor Modular Multilevel Converters with Coupled Inductors for Medium-Voltage Motor Drive System (중전압 전동기 구동시스템을 위한 결합 인덕터를 갖는 플라잉 커패시터 MMC)

  • Le, Duc Dung;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.173-174
    • /
    • 2018
  • This paper proposes the coupled inductor instead of four non-coupled inductors in each leg of the flying-capacitor modular multilevel converter (MMC) to reduce the dimension, weight and cost of the magnetic core. The simulation results have verified the effectiveness of the proposed coupled inductor.

  • PDF

Preparation of polymeric nanoparticles from hydrophobically modified pullulan for hydrophobic drug carrier

  • Kim, In-Sook;Kim, Sung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.409.1-409.1
    • /
    • 2002
  • For the development of a biocompatible nano-scale drug carrier. hydrophilic polysaccharide pullulan was hydrophobized by the conjugation with fatty acid. The synthesized polymers were characterized by the measurements of fourier transform infrared (FT -IR) spectroscopy and 1H -nuclear magnetic resonance (NMR) spectroscopy. In aqueous solution. hydrophobically modified puliulan was self-assembled and structured into the core-shell type nanoparticles. (omitted)

  • PDF

Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions (자속구속형 초전도 전류제한기의 철심조건에 따른 특성)

  • Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Cho, Guem-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.38-45
    • /
    • 2006
  • The superconducting fault current limiters(SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the opal-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.

Variation of Magnetic Properties of Fe-Si Compressed Cores with Si Content (Si 함량에 따른 Fe-Si 압분코어의 자기적 특성)

  • Jang, Pyung-Woo;Lee, Bong-Han;Choi, Gwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Fe-3, 4.2 and 6.8% Si compressed cores were fabricated, and then electrical resistivity, AC and DC magnetic properties, microhardness, and other properties were analyzed in order to know whether best soft magnetic properties could be also obtained in an Fe-Si compressed core with the well-known composition of Fe-6.5% Si. With increasing the silicon content, eddy current loss and hysteresis loss decreased and increased, respectively, so that a minimum total loss was not obtained in the well-known Fe-6.8 % Si cores, but obtained in the Fe-4.2 % Si cores. Also electrical resistivity of the cores and hardness of the particles increased monotonously with silicon content so that compaction ratio of the cores decreased. B2 and $DO_3$ ordered phase could be observed only in Fe-6.8% Si powder. A minimum loss and highest permeability of the Fe-4.2 % Si cores can be explained by the ratio of specific electrical resistivity of insulator to that of magnetic particles, micro-hardness, compaction ratio and demagnetization coefficient of the Fe-Si powder particles with silicon content.