• Title/Summary/Keyword: magnetic configuration

Search Result 355, Processing Time 0.026 seconds

Magnetic Field Analysis in Accordance with Line Configuration Type in Underground Transmission Systems (지중송전계통에서 선로의 구성방식에 따른 자계 해석)

  • Lee, Jae-Myeong;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1673-1678
    • /
    • 2015
  • This paper describes magnetic field on power cable in underground transmission systems. Based on specification which is being used in domestic power utility, magnetic field was analyzed in accordance with line arrangement, line burial depth and phase spacing. Magnetic field magnitude and its trend were understood in each circuit type such as double circuits, triple circuits and quadruple circuits of underground transmission systems. In addition, magnetic field was analyzed according to phase arrangement changing in each circuit. Finally, the proper phase arrangement configuration type was suggested by the evaluation of analysis result. Magnetic field was calculated by using Biot-Savart's law. According to the evaluated magnetic fields based on phase layout configuration in each circuit, it figured out that each of magnetic fields was different. As a result, this paper proposes a proper phase layout configuration for generating minimum magnetic field. It is evaluated that the phase layout configuration in each circuit proposed in this paper can be used at actual underground transmission systems.

An Experimental Study on the Formation of Reversed Field Configuration (역전적세배위의 형성에 관한 실채연)

  • 김동필;이기호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.12
    • /
    • pp.579-585
    • /
    • 1986
  • A Reversed Field Pinch(RFP) Plasma automatically forms the reversed field configuration in a stable state by the self-reversal phenomenon. But this process of formation of the reversed field configuration has a problem that instabilities occur. In order to form a RFP configuration in a stable state by removing instabilities, this experimental study attempts to restrain Toroidal magnetic fields and supplement Toroidal flux by employing high frequency rotating fields. As a result, the reversed magnetic field configuration is stably formed in a short period because high frequency rotating fields can deflect poloidal currents and produce magnetic fields in the Toroidal direction.

A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet- like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  • PDF

HALF-TURN ROTATION OF A POLARITY INVERSION LINE AND ASSOCIATED QUADRUPOLAR-LIKE STRUCTURE IN THE SUN

  • Magara, Tetsuya;An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.143-150
    • /
    • 2011
  • This paper reports a characteristic motion of a polarity inversion line (PIL) formed at the solar surface, which is newly found by performing a three-dimensional magnetohydrodynamic simulation of flux emergence in the Sun. A magnetic flux tube composed of twisted field lines is assumed to emerge below the surface, forming a bipolar region with a PIL at the surface. A key finding is the successive half-turn rotation of the PIL, leading to the formation of a quadrupolar-like region at the surface and a magnetic configuration in the corona; this configuration is reminiscent of, but essentially different from the so-called inverse-polarity configuration of a filament magnetic field. We discuss a physical mechanism for producing the half-turn rotation of a PIL, which gives new insights into the magnetic structure formed via flux emergence. This presents a reasonable explanation of the configuration of a filament magnetic field suggested by observations.

A STUDY OF SMALL FLARES ASSOCIATED WITH PLASMA BLOBS OUTFLOWING ALONG POST-CME RAYS

  • Kim, Yoo Jung;Kwon, Ryun-Young;Chae, Jongchul
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The recent study of Chae et al. (2017) found a one-to-one correspondence between plasma blobs outflowing along a ray formed after a coronal mass ejection (CME) and small X-ray flares. In the present work, we have examined the spatial configuration and the eruption process of the flares that are associated with the blobs by analyzing EUV images and magnetograms taken by the SDO/AIA and HMI. We found that the main flare and the successive small flares took place in a quadrupolar magnetic configuration characterized by predominant magnetic fields of positive polarity, two minor magnetic fragments of negative polarity, and a curved polarity inversion line between them, which suggests that the formation process of the blobs may be similar to that of the parent CME. We also found that the successive flares resulted in a gradual change of the quadrupolar magnetic configuration, and the relevant migration of flaring kernels. The three-dimensional geometry and the property of the current sheet, that is often supposed to be embedded in an observed post-CME ray, seem to keep changing because of mutual feedback between the successive flares and the temporal change of the magnetic field configuration. Our results suggest that the observed post-CME rays may not reflect the characteristics of the current sheet responsible for the impulsive phase of the flare.

Analysis of the Magnetic Fluid Seals considering the Surface Configuration (자성유체 형상변화를 고려한 밀봉시스템의 해석)

  • Kim, Dong-Hun;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.945-947
    • /
    • 1993
  • This paper presents the numerical algorithm that can obtain the surface configuration of the magnetic fluid seals. The magnetic field is computed by nonlinear finite element method considering the saturation of magnetic fluid and pole piece. The surface equilibrium condition in ferrohydrodynamics are used in algorithm. The influence of the surface configuration on the sealed pressure due to the magnetic, centrifugal and gravitational forces is analyzed and compared with other experimental results.

  • PDF

Calculation and Mitigation of Magnetic Field Produced by Straight Line-Conductor with Finite Length (유한장 직선도체에 의한 자계의 계산 및 감소대책)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.57-67
    • /
    • 2011
  • Purpose of this study is to find the mitigation method of magnetic field by finite length multi-conductors such as indoor distribution lines and to be applicable to design of the distribution lines. For this purpose, exact formula about the components $B_x$, $B_y$, $B_z$ of magnetic field need in case of straight line-conductor with finite length forward any direction. In this study simple formula of the components were deduced and by using these formula magnetic fields for various models of line-configurations were calculated. And also a calculation method of induced currents in conductive shield was presented and using this method, programing of calculation is relatively easy and calculation time is short. The magnetic field after cancellation by these induced currents was calculated. All of calculations were performed by Matlab 7.0 programs. Through the calculation results it could be obtained followings for the mitigation of magnetic fields. The separation between conductors ought to be smaller than smaller as possible. In case of 3-phase, delta configuration is more effective than flat configuration. In case of 3-phase, unbalanced currents ought to be reduced as possible.. In case of more than two circuits of 3-phase, adequate locations of each phase-conductor such as rotating configuration of 3-phase conductors are more effective. The magnetic shielding effect of the conductive shielding sheet is very high.

AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

  • Kim, Seokho;Park, Minwon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

A Model of Sunspots with a Magnetic Monopole-like Field Configuration

  • Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.6 no.1
    • /
    • pp.15-17
    • /
    • 1973
  • Observational implication for a possible presence of a magnetic monopole-like field in the visible layers of sunspots is examined by constructing a magnetostatic model of sunspots with a monopole-like field configuration. The resulting monopole approximation for a magnetic structure of spots is found to be compatible with the observations within a certain limited range of optical depth, which happens to lie mostly in its visible range.

  • PDF

Configuration of Temporomandibular Joint Articular Disc in Magnetic Resonance Images and its Relationship to Treatment Response of Anterior Disc Displacement Without Reduction (자기공명영상사진 상에 나타난 측두하악관절원판의 형태 및 그에 따른 치료 효과의 분석)

  • Kwon, Jin-Hak;Kee, Woo-Cheon;Chol, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.1
    • /
    • pp.73-85
    • /
    • 2000
  • The purposes of the study were (1) to see if there are various types of disc configuration in normal temporomandibular joint and, if so, (2) to examine whether a specific type of disc configuration is susceptible to disc displacement, and (3) to see if a specific type of disc configuration and position is related to early relief of clinical symptoms from the anterior disc displacement without reduction to conservative treatment. From the magnetic resonance (MR) images taken for the patients with symptoms of temporomandibular disorders, 235 images as normal joint group, 255 images as anterior disc displacement with reduction group, and 249 images as anterior disc displacement without reduction group were selected, After the TMJ image was scanned and processed with Photoshop program, the disc configuration was determined, The incidence of various types of disc configuration was analyzed according to age, sex, diagnostic group, and the promptness of symptom relief. The disc position was also examined in relation to the promptness of symptom relief. The results were as follows : 1. In the normal joint group, biconcave type appeared most frequently and reversed, biplanar type in order, Posterior band enlarged and folded type didn't appear at all. On the other hand, in the anterior disc displacement without reduction group, folded type appeared most frequently and also posterior band enlarged type were found often. 2. There were statistically significant differences between sex and configuration of disc in the normal joint group and no statistically significant differences in the anterior disc displacement with reduction group and anterior disc displacement without reduction group, 3. There were no statistically significant differences between age and configuration of disc in the normal, anterior disc displacement with reduction group and anterior disc displacement without reduction group. 4. In anterior disc displacement without reduction group, rapid response was observed in biconcave and reversed type and delayed response was observed in folded type.

  • PDF