• 제목/요약/키워드: magnetic characteristics

검색결과 3,225건 처리시간 0.032초

Correlation between Coil Configurations and Discharge Characteristics of a Magnetized Inductively Coupled Plasma

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.222-228
    • /
    • 2016
  • Correlation between coil configurations and the discharge characteristics such as plasma density and the electron temperature in a newly designed magnetized inductively coupled plasma (M-ICP) etcher were investigated. Radial and axial magnetic flux density distributions as well as the magnetic flux density on the center of the substrate holder were controllable by placing multiple circular coils around the etcher. The plasma density increased up to 60.7% by arranging coils (or optimizing magnetic flux density distributions inside the etcher) properly although the magnetic flux density on the center of the substrate holder was fixed at 7 Gauss.

Microstructure and Magnetic Characteristics of Mn-doped Finemet Nanocomposites

  • Le, Anh-Tuan;Kim, Chong-Oh;Chau Nguyen;Tho Nguyen Duc;Hoa Nguyen Quang;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • 제11권1호
    • /
    • pp.30-35
    • /
    • 2006
  • A thorough study about the influences of Mn substitution for Fe on the microstructure and magnetic characteristics of $Fe_{73.5-x}Mn-{x}Si_{13.5}B_{9}Nb_{3}Cu_1$ (x = 1, 3, 5) alloys prepared by the melt-spinning technique has been performed. Nanocomposites composed of nanoscale $(Fe,Mn)_{3}Si$ magnetic phase embedded in an amorphous matrix were obtained by annealing their amorphous alloys at $535^{\circ}C$ for 1 hour. The addition of Mn causes a slight increase in the mean grain size. The Curie temperatures of the initial amorphous phase and of the nanocrystals phase decreased, while the Curie temperature of the remaining amorphous phase remained nearly constant with increasing Mn content. Soft magnetic properties of the crystallized samples have been significantly improved by a proper thermal treatment. Accordingly, the giant magnetoimpedance effect is observed and ascribed to the increase of the magnetic permeability, and the decrease of the coercivity of the samples. The increased magnetic permeability is resulted from a decrease in the magnetocrystalline anisotropy and saturation magnetostriction.

Stability analysis of an insulationless HTS pancake coil under the magnitude of external magnetic field

  • Jung, Sung-Jun;Kim, Gyeong-Hun;Kim, Kwangmin;Park, Minwon;Yu, In-Keun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권4호
    • /
    • pp.41-45
    • /
    • 2012
  • An HTS (high temperature superconducting) coil without insulation has been investigated since a metallic insulation was suggested in the mid-1980s. The advantage of an insulationless HTS pancake coil is that it is more stable than an insulated HTS pancake coil. This paper focuses on the various characteristics of the insulationless HTS pancake coil related with stability, especially under the external magnetic field. Because HTS pancake coil may be influenced by the external magnetic field in a real operational environment of electrical devices. First, charge-discharge test was performed for the characteristics evaluation of the insulationless HTS pancake coil as compared with insulated HTS pancake coil in liquid nitrogen at 77 K. Based on the experiment results, characteristics evaluation of the insulationless HTS pancake coil was implemented under the external magnetic field. In order to carry out the experiment, we have fabricated a cylindrical solenoid coil to apply the magnetic field. The various characteristics of the insulationless HTS pancake coil were evaluated for charge-discharge and over-current conditions. This paper proves that the insulationless HTS pancake coil is more stable than the insulated HTS pancake under the external magnetic field.

다충구조 InSb 홀소자의 제작과 특성 (Magnetic Characteristics of an InSb Hall Device of Multilayerd Structure)

  • 이우선;김상용;서용진;박진성;김창일
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.681-687
    • /
    • 2000
  • Magnetic Characteristics of an InSb hall device of multilayered structures were investigated. For the measurement of electrical properties of the hall device InSb thin films fabricated with series and parallel multilayers wee evaporated. Hall coefficient hall mobility carrier density and hall voltage were measured as a function of the intensity of magnetic field. We found that the XRD analysis of InSb thin film showed good properties at 20$0^{\circ}C$ 60 minutes. Resistance of ohmic contact was increased linearly due to increasing current. Hall voltages at 0.01 T showed 5$\times$10$^{-4}$ [V] and $1.5\times$10$^{-3}$ [V]. Some of device fabrication technique and analysis of magnetic characteristics were discussed.

  • PDF

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.

A New Model of Magnetic Force in Magnetic Levitation Systems

  • Lee, Y.S.;Yang, J.H.;Shim, S.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.584-592
    • /
    • 2008
  • In this paper, we propose a new model of the magnetic control force exerted on the levitation object in magnetic levitation systems. The model assumes that the magnetic force is a function of the voltage applied to an electromagnet and the position of a levitation object. The function is not explicitly expressed but represented through a 2D lookup table constructed from the experimentally measured data. Unlike the conventional model that reveals only local characteristics of the magnetic force, the proposed model shows global characteristics satisfactorily. Specially devised measurement equipment is utilized in order to gather the data required for model construction. An experimental procedure to construct the model is presented. We apply the proposed model to designing a sliding mode controller for a lab-built magnetic system. The validity of the proposed model is illustrated by comparing the performances of the controller adopting the conventional model with that of the controller adopting the proposed model.

자기연마법에서 자극 진동 효과 (The Effect of Vibratory Magnetic Pole by Magnetic Abrasive Finishing)

  • 박원규;노태우;최환
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.7-12
    • /
    • 2005
  • An internal finishing process by the application of magnetic abrasive finishing has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, another method of magnetic abrasive machining in which the N and S magnetic poles are vibrated and a workpiece is rotated only is tried in a non-ferromagnetic pipe(SUS304), and its finishing characteristics is experimently investigated by various effective factors such as vibrating frequency and amplitude. From the experimental results, it is found that the vibration effects of magnetic poles on the finishing characteristics are large in internal finishing.

  • PDF

실험계획법을 이용한 Magnetic suspension의 최적설계 (Optimal Design of Magnetic Suspension Using Design of Experiment)

  • 정재우;김성일;하승형;홍정표;이주훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.769-770
    • /
    • 2006
  • This paper proposes the design method of a magnetic suspension that can control external vibration caused by low frequencies on the external vibrations by low frequencies. The magnetic suspension with individual controls is able to compensate the vibrations unlike a mechanical suspension. In the magnetic suspension, two characteristics are required. Firstly, magnetic motive force(MMF) by armature winding must be increased linearly. Secondly, identical magnitude of output force should be produced as direction of MMF. In this paper, axis-symmetric finite element analysis is used for magnetic field analysis. In order to optimize magnetic suspension, response surface methodology combined with experimental design is applied to investigate the characteristics and optimize the magnetic suspension for vibration -free table.

  • PDF

이중원관내 자성유체의 열전달 특성에 관한 연구 (A Study on the Heat Transfer Characteristics of Magnetic Fluids in Concentric Double Pipe Annuli)

  • 박정우;박기태;서이수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1657-1662
    • /
    • 2003
  • In this study, to research characteristics of heat flow of magnetic fluid, it's studied about numerical and experimental method of natural convections change and characteristics of heat transfer in Concentric double pipe annuli as analysis model. In the result, natural convection of magnetic fluid is controlled by direction and strength of the impressed magnetic field. Especially, according to average Nusselt number, heat transfer is the smallest on the balancing point between body force and buoyancy.

  • PDF

CoCrTa/Ti 이층막의 하지층기판온도의존성 및 특성개선 (Improvement of characteristics and dependence on underlayer substrate temperature of CoCrTa/Ti double layer)

  • 김용진;성하윤;금민종;손인환;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.492-495
    • /
    • 2000
  • In order to develop an ultra-thin CoCr perpendicular magnetic recording layer, we prepared CoCrTa/Ti double layer for perpendicular magnetic recording media by new facing targets sputtering system, Crystallgraphics and magnetic characteristics of CoCrTa on underlayer substrate temperature have been investigated. Crystallgraphic and magnetic characteristic of thin films were evaluated by X-ray diffractometry(XRD), vibrating sample magnetometer(VSM) and atomic force microscopy(AFM). The coercivity and anisotropy field was increased by increasing under layer substrate temperature, c-axis orientation of CoCrTa magnetic recording layer was improved 8$^{\circ}$ to 5.6$^{\circ}$when under layer substrate temperature was 250[$^{\circ}C$]. Also, through annealing effect for CoCrTa/Ti double layer, it was certain that crystallgraphics and magnetic characteristics was improved.

  • PDF