• Title/Summary/Keyword: magnetic absorption

Search Result 340, Processing Time 0.025 seconds

Control of Working Temperature of Isothermal Magnetic Entropy Change in La0.8Nd0.2(Fe0.88Si0.12)13 by Hydrogen Absorption for Magnetic Refrigerants

  • Fujieda, S.;Fujita, A.;Fukamichi, K.;Suzuki, S.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.150-154
    • /
    • 2013
  • $La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ and their hydrides were investigated to obtain large magnetocaloric effects (MCEs) in a wide temperature range, including room temperature, for applications in magnetic refrigents. Since the magnetization change due to the itinerant-electron metamagentic (IEM) transition for $La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ becomes larger with increasing z, the isothermal magnetic entropy change ${\Delta}S_m$ and the relative cooling power (RCP) are enhanced. In addition, the Curie temperatrue $T_C$ of $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}$ is increased from 193 to 319 K by hydrogen absorption, with the IEM transition. The maximum value of $-{\Delta}S_m$, $-{\Delta}S{_m}^{max}$, in a magnetic field change of 2 T for $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}H_{1.1}$ is about 23 J/kg K at $T_C$ = 288 K, which is larger than that of 19 J/kg K at $T_C$ = 276 K for $La(Fe_{0.88}Si_{0.12})_{13}H_{1.0}$. The value of RCP = 179 J/kg of the former is also larger than 160 J/kg of the latter. It is concluded that the partial substitution of Nd improves MCEs in a wide temperautre range, including room temperature.

Optically Detected Magnetic Resonance with Nitrogen-Vacancy Spin Ensemble in Diamond

  • Lee, Hyun Joon;Shim, Jeong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.40-45
    • /
    • 2018
  • We report Optically-Detected Magnetic Resonance (ODMR) study on Nitrogen-Vacancy (NV) centers in diamond. The experiment can easily be conducted with basic optics and microwave components. A diamond crystal having a high-density NV center is suitable for the ODMR study. The magnetic field dependence of ODMR spectrum allowed us to determine the orientation of the diamond crystal. In addition, we measured the variation of the ODMR spectrum as a function of the excitation laser power. Thermal heating induced by optical absorption caused the monotonic decrease of zero field splitting. The contrast of the ODMR peak, however, increased and, then, began to decrease, indicating the optimal laser power for recording the ODMR spectrum.

SMALL-SCALE Hα DYNAMIC FEATURES SUPPORTED BY CHROMO SPHERIC MAGNETIC RECONNECTION

  • LEE SANGWOO;YUN HONG SIK;CHAE JONGCHUL;GOODE PHILIP R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.21-27
    • /
    • 2003
  • In the present study, we have investigated morphology and evolution of small-scale Ha dynamic features on the quiet sun by analyzing video magnetograms and high resolution Ha images simultaneously taken for 5 hours at Big Bear Solar Observatory on April 18, 1997. From comparisons between time sequential longitudinal magnetograms and H$\alpha$ images covering $150" {\times} 150"$, several small-scale H$\alpha$ dynamic features have been observed at a site of magnetic flux cancellation. A close relationship between such features and cancelling magnetic fluxes has been revealed temporarily and spatially. Our results support that material injection by chromospheric magnetic reconnect ion may be essential in supporting numerous small-scale H$\alpha$ dynamical absorption features, being in line with recent observational studies showing that material injection by chromospheric magnetic reconnect ion is essential for the formation of solar filaments.

Local Structure and Magnetic Properties of Fe-Mn Nanocrystalline Alloys Fabricated by Mechanical Alloying Technique as a Function of Milling Time

  • Tarigan, Kontan;Yang, Dong Seok;Yu, Seong Cho
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • Structural and magnetic properties of $Fe_{50}Mn_{50}$ nanocrystalline alloys prepared by the mechanical alloying technique (using commercial Fe and Mn powders as the precursors) are studied as a function of milling time, 1 hr to 48 hrs. The nano-crystallite size and shape are examined by using scanning electron microscopy (SEM). The effect of milling time on structural characterization was investigated using X-ray diffractometer (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). Both XRD and EXAFS studies showed that the alloying process should be completed after 36 hrs milling. Concerning the magnetic behavior, the data obtained from superconducting quantum interference devices (SQUID) exhibited both magnetic saturation ($M_s$) and coercivity ($H_c$) depend strongly on the milling time, which are related to the changes in the crystallite size and magnetic dilution.

Electromagnetic Wave Absorber Sheet for 940 MHz Dedicated Short Range Communication Frequency Bands Using Fe Based Alloy Soft Magnetic Metal Powder (Fe-계 연자성 금속분말을 이용한 940 MHz 단거리 전용 통신 (DSRC) 대역 전파 흡수체)

  • Kim, ByeongCheol;Seo, ManCheol;Yun, Yeochun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.363-370
    • /
    • 2019
  • The recent development of information and communication technologies brings new changes to automobile traffic systems. The most typical example is the advancement of dedicated short range communication(DSRC). DSRC mainly consists of an intelligent transportation system(ITS), an electronic toll collection system(ETCS) and an advanced traveler information system(ATIS). These wireless communications often cause unnecessary electromagnetic waves, and these electromagnetic waves, in turn, cause frequent system malfunction. To solve this problem, an absorber of electromagnetic waves is suggested. In this research, various materials, such as powdered metal and iron oxides, are used to test the possibility for an effective absorption of the unnecessary electromagnetic waves. The various metal powders are made into a thin sheet form by compositing through processing. The electromagnetic characteristics(complex permittivity, complex permeability) of the fabricated sheet are measured. As a result, we achieve -6.5 dB at 940 MHz(77.6 % absorption rate) with a 1.0 mm-thickness electromagnet wave absorber, and -9.5 dB at 940 MHz(88.8 % absorption rate) with a 2.0 mm-thickness absorber.

Dual-Coupled Inductor High Gain DC/DC Converter with Ripple Absorption Circuit

  • Yang, Jie;Yu, Dongsheng;Alkahtani, Mohammed;Yuan, Ligen;Zhou, Zhi;Zhu, Hong;Chiemeka, Maxwell
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1366-1379
    • /
    • 2019
  • High-gain DC/DC converters have become one of the key technologies for the grid-connected operation of new energy power generation, and its research provides a significant impetus for the rapid development of new energy power generation. Inspired by the transformer effect and the ripple-suppressed ability of a coupled inductor, a double-coupled inductor high gain DC/DC converter with a ripple absorption circuit is proposed in this paper. By integrating the diode-capacitor voltage multiplying unit into the quadratic Boost converter and assembling the independent inductor into the magnetic core of structure coupled inductors, the adjustable range of the voltage gain can be effectively extended and the limit on duty ratio can be avoided. In addition, the volume of the magnetic element can be reduced. Very small ripples of input current can be obtained by the ripple absorption circuit, which is composed of an auxiliary inductor and a capacitor. The leakage inductance loss can be recovered to the load in a switching period, and the switching-off voltage spikes caused by leakage inductance can be suppressed by absorption in the diode-capacitor voltage multiplying unit. On the basis of the theoretical analysis, the feasibility of the proposed converter is verified by test results obtained by simulations and an experimental prototype.

Behavior of Spin Waves Excited in Magnetic Thin Film (자성 박막에서 여기되는 스핀파 거동)

  • 한기평;손영준;백문철;조경익
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.86-92
    • /
    • 2000
  • The spin wave absorption spectra are obtained by a simultaneous solution of the Maxwell equation and the Gilbert equation considering the boundary condition of electromagnetic wave and magnetization in the film surfaces. The physical parameters that influence the absorption energy are thickness, exchange stiffness constant, surface magnetic anisotropy, magnetization. damping factor, electric resistivity of the thin film. We investigated how these parameters affect the resonance field, the linewidth and the intensity of the spin wave spectrum.

  • PDF

Electric and Magnetic Properties of NCZF for High Frequency Chip-Inductor (고주파 Chip-Inductor용 NCZF 전자기적 특성)

  • 정승우;김태원;김성수;백승철;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.80-83
    • /
    • 1999
  • We have studied properties(crystal structure, density, absorption, contraction, initial permeability, and permeability) of Ni$_{0.175-x}$Cu$_{x}$Zn$_{0.33}$Fe$_{0.495}$ (x=0~0.175) ferrites with various NiO and CuO, because of development of materials for high frequency inductor. The XRD peaks of all of samples were observed only spine이 phase. As a results of the density, absorption rate, and shrinkage rate, the grain growth progressed rapidly in x=0.1 at 95$0^{\circ}C$, x=0.075 at 105$0^{\circ}C$, and x=0.025 at 115$0^{\circ}C$ for 3 hours. Initial permeability increased with increasing CuO concentration until x=0.1, and then decreased. The complex permeability as a function frequency were high values at sintered 105$0^{\circ}C$ fotr3 hours in x=0.075, 0.1., 0.1.1.

  • PDF

Microwave Characteristics of Ferroxplana-Silicone Rubber Composite (Ferroxplana-Silicone Rubber 복합체의 마이크로파 특성)

  • 박효열;김근수;김태옥
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.401-406
    • /
    • 2004
  • In this experimentation, we investigated the characteristics of electromagnetic wave absorption of ferroxplana powder and silicone rubber composite. Ferroxplana was prepared by flux method at low temperature. The crystallization, magnetic properties and particle morphology of the obtained ferroxplana powder were investigated by using XRD, VSM and SEM. The particle size of ferroxplana powder was 2∼4$\mu\textrm{m}$ at the ratio of R=26, The coercivity and saturation magnetization of ferroxplana powder increased slightly with increase of temperature, The magnetic loss was the main factor of electromagnetic wave absorption of ferroxplana powder and silicone rubber composite, The maximum reflection loss of composite was about -l5dB below 4GHz.

Electronic structure studies of CoFeRO (R=Hf,La,Nb) thin films by X-ray absorption spectroscopy

  • Song, J.H.;Gautam, S.;Chae, K.H.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.378-378
    • /
    • 2010
  • We report the electronic structure of CoFeO-R (R=Hf, La, Nb) thin films studied by x-ray absorption spectroscopy (XAS). These ferrites thin films were prepared by pulsed laser deposition method and characterized by XAS measurements at O K-, Co and Fe L-edges. The O K-edge spectra suggest that there is a strong hybridization between O 2p and 3d electrons of transition metal cations and Fe $L_{3,2}$-edge spectra indicate that Fe-ions exist in $Fe^{2+}$ with tetrahedral site of the spinel structure. Divalent Co ions is also distributed in tetrahedral site with rare earth ions goes to octahedral sites of spinel structure. X-ray magnetic circular dichroism (XMCD) is also used to explain the symmetry and magnetic nature dependence on rare-earth ions.

  • PDF