• Title/Summary/Keyword: magnet design

Search Result 1,404, Processing Time 0.024 seconds

Optimal Design of Permanent Magnet Actuator Using Parallel Genetic Algorithm (병렬유전 알고리즘을 이용한 영구자석형 액추에이터의 최적설계)

  • Kim, Joong-Kyoung;Lee, Cheol-Gyun;Kim, Han-Kyun;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents an optimal design of a permanent magnet actuator(PMA) using a parallel genetic algorithm. Dynamic characteristics of permanent magnet actuator model are analyzed by coupled electromagnetic-mechanical finite element method. Dynamic characteristics of PMA such as holding force, operating time, and peak current are obtained by no load test and compared with the analyzed results by coupled finite element method. The permanent magnet actuator model is optimized using a parallel genetic algorithm. Some design parameters of vertical length of permanent magnet, horizontal length of plunger, and depth of permanent magnet actuator are predefined for an optimal design of permanent magnet actuator model. Furthermore dynamic characteristics of the optimized permanent magnet actuator model are analyzed by coupled finite element method. A displacement of plunger, flowing current of the coil, force of plunger, and velocity of plunger of the optimized permanent magnet actuator model are compared with the results of a primary permanent magnet actuator model.

Design of Magnet Shape for Axial-Flux Type Permanent-Magnet Synchronous Generator with Dual Air-Gap (횡자속형 2중 공극 영구자석 동기발전기의 마그네트 형상설계)

  • Choi K.H.;Kim K.S.;Jin M.C.;Hwang D.H.;Bae S.W.;Kim D.H.;Ro C.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.828-831
    • /
    • 2003
  • This paper presents a novel design technique and characteristic analysis of Magnet for dual air-gap axial-flux type permanent-magnet synchronous generator. The process of magnet design is applied to the motor design and steady state analysis considering output voltage waveforms and magnetic flux waveforms. Design and construction of an axial-flux permanent-magnet generator with power output at 60 [Hz], 300[r/min] is introduced. Finite-element (FE) method is applied to analyze magnet shape characteristics. The results of FE analysis show generator is feasible for use with dual air-gap axial-flux permanent- magnet synchronous generator.

  • PDF

High-Tc superconducting magnet properites with design conditions (설계조건에 따른 고온 초전도 마그넷의 특성변화)

  • Kim, Min-Ki;Ko, Yo;Han, Byoung-Sung
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.451-457
    • /
    • 1995
  • Most important study on development of high-Tc superconducting magnet is magnetic properties with design conditions To study optimal design condition of high-Tc superconducting magnet, small size solenoid magnet was designed and simulated. Design conditions are radius of bobbin, radius of magnet, length of magnet, critical cur-rent and notch size. We know that intensity of magnetic fields was controled by critical current and uniformity of magnetic fields was controled by notch size. The optimal design conditions to get the high intensity and uniformity of magnetic field in this experiments were radius of bobbin=3[cm], radius of magnetic=12[cm], length of Z=10[cm], notch size=6[cm] and critical current=12[A].

  • PDF

The Design of Levitation Magnet for UTM(Urban Transit Maglev)-02 using Maxwell-3D FEM (Maxwell-3D FEM을 이용한 UTM(Urban Transit Maglev)-02 의 부상용 전자석 설계)

  • Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.699-701
    • /
    • 2000
  • It leaves much room for improvement that UTM-01 is of practical use. Therefor we will design of UTM-02 system. The design of new magnet is based on light weight for bogie system. We used Maxwell-3D FEM for design of new magnet. The new magnet for UTM-02 that was reduced weight of magnet. 22kg, then it was increased ratio lift to weight is 9.87.

  • PDF

Study of Permanent Magnet Optimum Design on the Permanent Magnet assisted-Synchronous Reluctance Motor

  • Lee, Hyung-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.28-33
    • /
    • 2009
  • Average torque of PMa-SynRM(Permanent Magnet-assisted Synchronous Reluctance Motor) is changed by magnet form inserted to the barrier. Because the magnet structure inserted to the barrier influences to the magnet-torque and reluctance torque. Therefore, this paper present a suitable permanent magnet form design for maximum torque when the magnet quantites are always fixed. And each motor characteristic such as average torque, torque ripple, cogging torque and back-EMF are analyzed by FEM(Finite Element Method) for optimal design.

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

A design of actively shielded superconducting MRI magnet (능동차폐형 초전도 MRI 마그네트의 설계)

  • 진홍범;류강식;송준태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.24-29
    • /
    • 1996
  • Magnetic field theories for the design of highly homogeneous magnet are introduced and a nonlinear optimization method for the design of actively shielded superconducting magnet is presented. The presented design method can optimize both main coil and shielding coil simultaneously by setting constraints on stray field intensity at a specified distance from the magnet center. A 2-Tesla actively shielded superconducting magnet, with 90cm bore diameter, is designed using the presented method. The field homogeneity is 2ppm/30cm DSV and the 5 gauss stray field contour is within 4m axially and 3m radially from the magnet center. (author)., 7 refs., 6 figs., 3 tabs.

  • PDF

Optimum Design Study on 0.5 MJ-Class Superconducting Pulse Magnet (0.5MJ 초전도 펄스 마그네트의 최적화 설계에 관한 연구)

  • 노완수;한송엽;황석영;이승원;홍원표
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.813-819
    • /
    • 1990
  • In this paper, a new design method for superconducting pulse magnet is presented. Given energy storage capacity, magnet shape parameters are determined to minimize superconducting material quantity. Once the shape parameters are determined, cooling channel is designed and degradation characteristics are confirmed. According to the proposed magnet design concept, relatively uniform and low field distribution is obtained. Therefore, both the quantity of superconducting material and the mechanical load over magnet are reduced.

  • PDF

Design of ferromagnetic shims for an HTS NMR magnet using sequential search method

  • Yang, Hongmin;Lee, SangGap;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.39-43
    • /
    • 2021
  • This study deals with the ferromagnetic shims design based on the spherical harmonic coefficient reduction method. The design method using the sequential search method is an intuitive method and has the advantage of quickly reaching the optimal result. The study was conducted for a 400 MHz all-REBCO magnet, which had difficulty in shimming due to the problem of SCF (screening current induced field). The initial field homogeneity of the magnet was measured to be 233.76 ppm at 20 mm DSV (Diameter Spherical Volume). In order to improve the field homogeneity of the magnet, the ferromagnetic shim with a thickness of 1 mil to 11 mil was constructed by a design method in which sequential search algorithm was applied. As a result, the field homogeneity of the magnet could be significantly improved to 0.24 ppm at 20 mm DSV and 0.05 ppm at 10 mm DSV.

Magnet Design using Topology Optimization

  • Jenam Kang;Park, Seungkyu;Semyung Wang
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.79-83
    • /
    • 2003
  • The topology optimization for the magnet design is studied. The magnet design in the C-core actuator is investigated by using the derived topology optimization algorithm and finite element method. The design sensitivity equation for the topology optimization is derived using the adjoint variable method and the continuum approach.