• 제목/요약/키워드: magnesium reduction

검색결과 150건 처리시간 0.021초

타이타늄 제련기술 현황 (Current Status of Titanium Smelting Technology)

  • 손호상;정재영
    • 자원리싸이클링
    • /
    • 제25권4호
    • /
    • pp.68-79
    • /
    • 2016
  • 타이타늄은 지각 구성원소 중 아홉 번째로 풍부한 원소이다. 또한 구조용 금속으로서는 알루미늄, 철, 마그네슘에 이어서 네 번째로 풍부한 원소이다. 일반적으로 이러한 타이타늄은 Kroll법에 의해 만들어지고 있다. 최근 전 세계의 많은 연구자들에 의해서 새로운 타이타늄 제련법이 개발되어 왔다. 본 연구에서는 상업화 되었거나 개발 중인 신 제련 프로세스를 $TiCl_4$의 금속 열환원법, $TiO_2$ 등의 전해환원법, 그리고 수소를 이용한 환원법으로 분류하였다. 이러한 새로운 제련 프로세스의 환원기구와 현황에 대하여 종합하고 상업화 가능성의 관점에서 정리하였다.

열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구 (A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets)

  • 김수현;임창동;유봉선;서영명;정인상
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

신 열환원 공정에 의한 초미립 티타늄 카바이드 분말 합성 (Synthesis of Ultrafine Titanium Carbide Powder by Novel Thermo-Reduction Process)

  • 이동원;;배정현;김병기
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.390-394
    • /
    • 2003
  • Ultra fine titanium carbide particles were synthesized by novel metallic thermo-reduction process. The vaporized TiC1$_4$+$CCl_4$ gases were reacted with liquid magnesium and the fine titanium carbide particles were then produced by combining the released titanium and carbon atoms. The vacuum treatment was followed to remove the residual phases of MgC1$_2$ and excess Mg. The stoichiometry, microstructure, fixed and carbon contents and lattice parameter were investigated in titanium carbide powders produced in various reaction parameters.

Effect of oxygen containing compounds in uranium tetrafluoride on its non-adiabatic calciothermic reduction characteristics

  • Gupta, Sonal;Kumar, Raj;Satpati, Santosh K.;Sahu, Manharan L.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1931-1938
    • /
    • 2021
  • Uranium ingot is produced by metallothermic reduction of uranium tetrafluoride using magnesium or calcium as reductant. Presence of oxygen containing compounds viz. uranyl fluoride and uranium oxide in the starting uranium fluoride has a significant effect on the firing time, final temperature of the charge, slag-metal separation and hence the metal recovery. As reported in the literature, the maximum tolerable limit for uranyl fluoride in the UF4 is 2.5 wt% and limit for uranium oxide content is in the range 2-3 wt%. No theoretical or experimental basis is available till date for these limits. Analyses have been carried out in this study to understand the effect of UO2F2 concentration in the starting fluoride on the final temperature of the products and thus the reduction characteristics. UF4 having uranyl fluoride concentration, less than as well as more than 2.5 wt%, have been investigated. Thermodynamic calculations have been carried out to arrive at a general expression for the final temperature attained by the products during calciothermic reduction of UF4. Finally, an upper limit for the oxygen containing impurities has been estimated using the CaO-CaF2 phase diagram.

영가철과 여러 가지 산화철 조합공정을 이용한 질산성질소 환원에 관한 연구 (Nitrate Reduction by Fe(0)/iron Oxide Mineral Systems: A Comparative Study using Different Iron Oxides)

  • 송호철;전병훈;조동완
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권1호
    • /
    • pp.63-69
    • /
    • 2014
  • This paper presents the feasibility of using different iron oxides (microscale hematite (HT), microscale magnetite (MT), and nanoscale maghemite (NMH)) in enhancing nitrate reduction by zero-valent iron (Fe(0)) under two solution conditions (artificial acidic water and real groundwater). Addition of MT and NMH into Fe(0) system resulted in enhancement of nitrate reduction compared to Fe(0) along reaction, especially in groundwater condition, while HT had little effect on nitrate reduction in both solutions. Field emission scanning electron microscopy (FESEM) analysis showed association of MT and NMH with Fe(0) surface, presumably due to magnetic attraction. The rate enhancement effect of the minerals is presumed to arise from its role as an electron mediator that facilitated electron transport from Fe(0) to nitrate. The greater enhancement of MT and NMH in groundwater was attributed to surface charge neutralization by calcium and magnesium ions in groundwater, which in turn facilitated adsorption of nitrate on Fe(0) surface.

Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구 (Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction)

  • 박지혜;백정훈;황라현;이광복
    • 청정기술
    • /
    • 제23권4호
    • /
    • pp.429-434
    • /
    • 2017
  • 저온 수성가스전이반응에서 $Cu/ZnO/MgO/Al_2O_3$ (CZMA) 촉매의 마그네슘의 영향을 조사하기 위하여 Cu/Zn/Mg/Al의 비율을 45/45/5/5 mol%로 공침법을 사용하여 제조하였다. 제조된 촉매들은 BET, $N_2O$ 화학흡착, XRD, $H_2-TPR$ and $NH_3-TPD$를 사용하여 분석되었다. 촉매 활성 테스트는 GHSV $28,000h^{-1}$와 온도 범위 $200{\sim}320^{\circ}C$에서 수행되었다. 동일한 조건에서 마그네슘이 첨가된 촉매(CZMA 400)는 가장 낮은 환원 온도를 나타내며 활성종인 $Cu^+$가 안정적으로 존재하고 또한 많은 약산점을 보유하였다. 또한 마그네슘이 첨가된 촉매(CZMA)는 마그네슘이 첨가되지 않은 촉매(CZA)와 비교하였을 때 240 이상의 높은 온도에서 촉매 활성이 증가하였다. CZMA 400 촉매는 최적의 촉매로서 $240^{\circ}C$, GHSV $28,000h^{-1}$에서 75 h 동안 활성의 저하없이 평균 CO 전환율 77.59%를 나타내었다.

Effects of Selenium, Copper and Magnesium on Antioxidant Enzymes and Lipid Peroxidation in Bovine Fluorosis

  • Han, Bo;Yoon, Soonseek;Su, Jingliang;Han, H.R.;Wang, Mei;Qu, Weijie;Zhong, Daibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권12호
    • /
    • pp.1695-1699
    • /
    • 2004
  • The antioxidant enzymes, lipid peroxidation and free radicals assessment were made of the effects of selenium, copper and magnesium on bovine endemic fluorosis under high fluoride, low selenium and low copper productive conditions. Thirty-two beef cattle were selected from high fluoride area, and randomly divided into four groups with eight cattle each as follows: (1) high fluoride control group (HFC); (2) supplemented group with 0.25 mg/kg selenium (HFSe); (3) supplemented group with 15 mg/kg copper (HFCu) and (4) supplemented group with 0.25 mg/kg selenium+15 mg/kg copper+1 mg/kg magnesium (HFSeCuMg) per day for 83 days. Moreover, eight beef cattle were selected from non-high fluoride area as normal control group. Blood samples were collected from cattle on 0 d, 30 d and 83 d respectively, to analyze the enzyme activities and concentration of GSH-px, CAT, SOD, MDA and free radicals. The results showed that the contents of free radicals and MDA in HFC group were significantly higher, and the whole blood GSH-px, CAT, erythrocyte SOD activities were lower than the normal control group. Free radicals, metabolic imbalance and antioxidant disorder therefore, play an important role in fluorosis. However, GSH-px, CAT and SOD activities in HFSe group and HFSeCuMg group at 30 d and 83 d were markedly higher than the same groups at the 0 d and the HFC group at the same time. Likewise, there was a corresponding reduction in the contents of free radicals and MDA. These findings indicated that supplementation with selenium, copper and magnesium elevated high fluoride bovine antioxidant enzymes, and decreased MDA and free radicals contents. But, the activities of supplementation selenium group did not increase until day 83. These results demonstrated that fluorosis was associated with lower serum Se and Cu levels than in the control, and it was therefore concluded that fluorosis is associated with decreased serum levels of these minerals. Long-term high fluoride intake under productive condition enhances oxidative stress in the blood, thereby disturbing the antioxidant defense of cattle. Increased oxidative stress could be one of the mediating factors in the pathogenesis of toxic manifestations of fluoride. It is benefical for high fluoride cattle supplemented with proper selenium, copper and magnesium to increase fluoride excretion and obtain the protective impact of the activity of oxidative enzymes, and to decrease lipid peroxidation and free radicals contents.

국내 키위 주산지 토양 및 엽 화학성과 과실 특성 (Soil and Leaf Chemical Properties and Fruit Quality in Kiwifruit Orchard)

  • 김홍림;이목희;정경호
    • 한국환경농학회지
    • /
    • 제41권3호
    • /
    • pp.158-166
    • /
    • 2022
  • BACKGROUND: Kiwifruit is a fruit tree with relatively small cultivation area in Korea and researches on its soil and physiology are very limited compared to those on cultivar development. Therefore, there are limited information for farmers to cope with the reduction in productivity due to various physiological disorders and premature aging. This study was conducted to investigate the soil and leaf chemical properties, and fruit characteristics, which will be used as basic data for stable kiwifruit orchard soil management. METHODS AND RESULTS: The soil and leaf chemical properties, and fruit characteristics were investigated for two years in 16 kiwifruit orchards growing 'Hayward' (Actinidia deliciosa) in Jeollanam-do and Gyeongsangnam-do. Soil and leaf samples were collected in July and fruit quality was investigated by harvesting fruits about 170 days after full bloom. The average soil chemical properties of kiwi orchards were generally higher than the recommended level, except for pH, and especially, the exchangeable potassium reached about 300% of the recommended level. The proportions of orchards that exceeded the recommended level of soil chemical properties were 63, 31, 100, 69, 94, 88 and 69% for pH, EC, organic content, available phosphate, and exchangeable potassium, calcium and magnesium, respectively. Thirty-three percent of orchards had more than 100 mg/kg of nitrate nitrogen in soil. Available phosphate in soil showed a significantly positive correlation with leaf nitrogen, phosphoric acid and calcium content, but showed a significantly negative correlation with leaf potassium content. The magnesium content in the leaves was significantly correlated with soil pH. The highest fruit weight was observed in about 25 g/kg of leaf nitrogen content which could be attained when plants were grown on the soil containing about 100 mg/kg of nitrate nitrogen content. The average soluble solids content among 16 orchards was 9.58 °Brix at harvest and 13.9 °Brix after ripening, which increased about 45%, and the average fruit weight was about 110 g. CONCLUSION(S): For fruit quality, fruit soluble solids (sugar compounds) content was significantly correlated with leaf potassium content, fruit hardiness with leaf total nitrate, calcium and magnesium, and fruit titratable acidity with leaf magnesium; however, leaf calcium and magnesium negatively affect the soluble solids contents in fruits.

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • 제16권3호
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

MgCl2-CaCl2-NaCl 혼합용융염에서 Mg2+ 이온의 전기화학적 거동 (Electrochemical Behavior of Mg2+ Ions in MgCl2-CaCl2-NaCl Molten Salt)

  • 류효열;정상문;김정국
    • Korean Chemical Engineering Research
    • /
    • 제50권6호
    • /
    • pp.939-944
    • /
    • 2012
  • 본 연구에서는 $MgCl_2-CaCl_2$-NaCl 혼합용융염에서 $Mg^{2+}$ 이온의 전기화학적 거동을 평가하였다. $MgCl_2-CaCl_2$-NaCl 용융염에서 순환전압전류법 측정을 통해 $Mg^{2+}$이온의 환원전위를 측정하였고, $MgCl_2$의 농도 변화 및 용융염의 온도변화에 따른 환원전위의 영향에 대해 살펴보았다. 그리고 각각 660, 680, 700, 720 및 $740^{\circ}C$의 온도에서 $Mg^{2+}$ 이온의 확산계수를 계산한 결과 $8.79{\times}10^{-6}$, $9.56{\times}10^{-6}$, $1.17{\times}10^{-5}$, $1.4{\times}10^{-5}$$1.77{\times}10^{-5}\;cm^2\;s^{-1}$로 측정되었다. 또한 Arrhenius 식을 통해 $Mg^{2+}$ 이온의 확산에 대한 활성화 에너지는 $70.28\;kJ\;mol^{-1}$로 계산되었다.