• Title/Summary/Keyword: magnesium alloys

Search Result 294, Processing Time 0.024 seconds

A Study on Effect of Temperature of Press Forging on AZ31 Magnesium Alloy

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast-ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, it is studied about the forming characteristics of press forging of AZ31 magnesium alloy by MSC/MARC in case of material having one boss and MSC/Supeiforge in case of material having multi-boss with heat transfer analysis during deformation at elevated temperature. For these results it is simulated about temperature distribution, strain distribution, and stress distribution of AZ31 Magnesium alloy. During the press forging, foot regions of bosses showed greater temperature rise than other areas of AZ31 sheet. Finally the plastic strain of AZ31 sheet did not remarkably vary with increasing temperature from 373 to 473K, while it significantly increased as the forming temperature increased from 473 to 573K, which is related with the change in micro-structures, such as dynamic re-crystallization occurring during the deformation process.

  • PDF

Study of Plating Layer Formation of Lightweight Magnesium Alloy (AZ31B) (경량 마그네슘 합금(AZ31B)의 도금층 형성 연구)

  • Choi, Kyoung-Su;Choi, Soon-Don;Min, Bong-Ki;Lee, Seung-Hyeon;Sin, Hyeon-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.239-245
    • /
    • 2011
  • Magnesium alloys is the lightest by structural metals, but it is not good corrosion resistant because of pit, void. Particularly, AZ31B magnesium alloy sheets that have slag, scratch by rolling process indicate some defects. The objective of this research is to perform uniform plating on AZ31B by studying etching and zincate process. Especially, zincate treatment by zinc salt and pyrophosphate is the most important in the decoration plating. Dissolution of magnesium is reduced by the formation of uniform zinc conversion layer during strick and post process, which decreases defects for plating process.

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (III) - Butt Weldability of Sand Casting Magnesium Alloy using Pulsed Nd:YAG Laser - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (III) - Pulsed Nd:YAG 레이저를 이용한 사형주조 마그네슘 합금의 맞대기 용접성 -)

  • Kim, Jong-Do;Lee, Jung-Han;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2013
  • Magnesium has good castability and limited workability, so its products have been manufactured by almost casting processes. In this study, a pulsed Nd:YAG laser was used to butt-weld the sand casting magnesium alloys. And the effect of welding conditions such as peak power, pulse width, welding speed was evaluated in detail. As a result of this study, large underfill and plenty of spatter taken place under the conditions with high peak power. Thus, it is recommended to use low peak power and long pulse width to obtain good welds with deep penetration. It is also confirmed that the welding speed and pps(pulse per second) are directly connected at weld defects such as underfill, porosity.

Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method (마그네슘의 등통로각압축 공정 시 변형 및 파괴 거동에 대한 유한요소해석)

  • Yoon, Seung Chae;Pham, Quang;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.144-149
    • /
    • 2008
  • Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.

The Effect of Calcium on Microstructure of AZ61 Magnesium Alloy during Annealing Heat Treatment (AZ61 마그네슘 합금의 어닐링 중 Ca의 첨가에 따른미세조직 변화에 미치는 영향)

  • Kim, Kibeom;Jeon, Joonho;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2021
  • Due to high specific strength and low density, AZ series magnesium alloys have been receiving high interest as a lightweight material. However, their industrial application is limited due to the phenomenon that the strength decreases at elevated temperature by the occurrence of softening effect because of the Mg17Al12 phase decomposition. To solve this problem, many research were conducted to increase the high-temperature strength by forming a thermal stable second-phase component by adding new elements to the AZ magnesium. Especially, adding Ca to AZ magnesium has been reported that Ca forms the new second-phase. However, studies about the analysis of decomposition or precipitation temperature, formation composition, and components to understand the formation behavior of these precipitated phases are still insufficient. Therefore, the effect of Ca addition to AZ61 on the phase change and microstructure of the alloy during annealing was investigated. As a result of analysis of the initial and heat-treated specimen, AZ61 formed α-Mg matrix and precipitated phase of Mg17Al12, and AZX611 formed one more type of precipitated phase, Al2Ca. Also, Al2Ca was thermal stable at high temperatures. And after annealing, the laves phase was decomposed to under 10 ㎛ size and distributed in matrix.

Constitutive Modeling of AZ31B Magnesium Alloys (AZ31B 마그네슘 합금 판재의 구성식 개발)

  • Lee, M.G.;Chung, K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

Prediction of Springback by Using Constitutive Equations of Mg Alloy Sheets (마그네슘 합금 구성식을 이용한 스프링백 예측)

  • Lee, M.G.;Chung, K.;Kim, S.J.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.97-101
    • /
    • 2008
  • Unique constitutive behavior of magnesium alloys as one of hexagonal close packed(hcp) metals has been implemented into the commercial finite element program ABAQUS. The constitutive equations can represent asymmetry in tension-compression yield stresses and flow curves. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test proposed in Numisheet'2002 benchmark committee. Besides the developed constitutive models, the isotropic models based on tensile and compressive properties were also considered for comparison purpose. The predicted results by the finite element analysis and corresponding experiments showed enhanced prediction capability in springback analysis.

Control of Grain Size on Friction Stir Welded AZ31 and AZ91 (AZ31과 AZ91의 마찰교반용접부 결정립 크기 제어)

  • Gwon, Gi-Su;Lee, Chang-U;Kim, Mok-Sun;Sato, Yutaka S.;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.328-331
    • /
    • 2007
  • It was carried out to evaluate microstructure and mechanical properties of friction stir welded(FSW) on magnesium alloys. Two types magnesium alloy was used in this work, AZ31 wrought and AZ91 cast magnesium alloy. Microstructure near the weld zone showed general weld structures such as stir zone(SZ), thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ). In the AZ91 alloy, the SZ had a fine grain size and $\beta$ phase particles which were well distributed in matrix. It was characterized to redistribute by partial or full re-solution of the $\beta$ phase which is coarse in base metal during FSW processing. The hardness of the SZ slightly increase than the base metal in AZ31 Mg alloy.

  • PDF