The Gadaeri granite near Ulsan mine is an oval-shape isolated granitic body, and is genetically related to the iron-tungsten mineralization. The Gadaeri granite exhibits calc-alkaline and I-type characteristics, and generally shows the micrographic texture which indicates the shallow depth of emplacement. Consideration of the stratigraphic thickness of Ulsan formation and minimum-melt compositions suggests that the bulk magma crystallized at pressure of 0.5~2.0 kbar under water saturated condition. The evolutionary trend observed in the studied rocks represents that feldspar fractional crystallization has been a major magmatic process at the Gadaeri granite pluton. Different chemical characteristics between the Gadaeri and the Masan-Kimhae granites cannot be explained by fractional crystallization or different degrees of partial melting, and it reflects that the magma source for Gadaeri granite was different from that of the Masan and Kimhae granites.
The Daebong gold-silver deposits is located in 8 km southwest of Cheongyang, Chungcheongnam-Do, Republic of Korea. The gold-silver-bearing hydrothermal quartz veins was formed within the Precambrian metasediments of Gyeonggi massif. Ore minerals occur as mainly of pyrite, sphalerite (0.78~6.19 wt.% Cd), galena, pyrrhotite and minor amounts of chalcopyrite, arsenopyrite, magnetite, ilmenite, chalcocite, electrum (55.00~89.55 wt.% Au) and argentite. The gangue minerals are quartz, calcite, chlorite, K-feldspar, biotite. Wall-rock alterations such as chloritization, silicification, pyritization, carbonatization and sericitization can be observed near the quartz veins. According to the mineral paragenetic sequence based on vein structure and mineral assemblages, three stage mineralizations can be recognized. Fluid inclusion, sulfur isotope and thermodynamic data show that the ore minerals were dominantly deposited at the between 388 and $204^{\circ}C$ from fluids with salinities of 8.1~0.3 wt.% equivalent NaCl, and sulfur isotope value 4.84 to 6.40 per mil of sulfides indicates igneous sources of sulfur in the hydrothermal system and fluid inclusion salinity data suggest that thermal fluids may have magmatic origin with some degree mixing of meteoric water.
The Geochemica] and isotope studies on the $CO_2$-rich water from the Shinchon area were carried out. The Shinchon $CO_2$-rich water belongs to Ca(Na)-$HCO_3$ type showing very high $P_{CO_{2}}$ ( $10^{-0.35}$ ~ $10^{0.29}$ atm) and TDS (835-3,144 mg/L). The results of geochemical and isotope analysis indicate that $CO_2$ gas is originated from the deep seated source such as mantle or magmatic gases. The $CO_2$-rich water was evolved by interaction with deep-seated granite and major water-rock interaction was dissolution of p]agioclase resulting high Na content of $CO_2$-rich water. Precipitation and dissolution of secondary calcite might be accompanied with the dissolution of plagioclase maintaining Na/Ca ratio. High contents of K and $SO_4$ indicate that the geochemical characteristics of $CO_2$-rich water were partially affected by interaction with upper sedimentary rock during uprising to surface. N03 and tritium contents suggest that the $CO_2$-rich water was mixed with low $CO_2$ groundwater at some locations. The oxygen-hydrogen isotopes show that all water samples were derived from meteoric waters and the $CO_2$-rich water was isotopically re-equilibrated with lighter $CO_2$ gas. Although some carbon isotope data show isotopically heavy values, carbon isotope data indicate that the $CO_2$ gas was possib]y derived by deep source.
Lee, Kangwon;Moon, Hi-Soo;Song, Yungoo;Kim, In Joon
Economic and Environmental Geology
/
v.26
no.3
/
pp.289-309
/
1993
Milyang pyrophyllite deposit which was formed by hydrothermal alteration occurs in Late Cretaceous andesitic tuff in the Milyang area, Gyeongsangnamdo. The wall rock alteration and genesis of the Milyang pyrophyllite deposit were studied. The ore minerals are composed dominantly of pyrophyllite accompanied by small amounts of quartz, kaolinite, pyrite, dumortierite and diaspore. The alteration halo of this deposit can be divided into three zones on the basis of mineral assemblage; pyrophyllite, sericite and chlorite zone. The common mineral assemblages of each alteration zone are as follows: (1) pyrophyllite zone; pyrophyllite-quartz-kaolinite-pyrite-dumortierite-diaspore, (2) sericite zone; sericite-quartz-pyrite-kaolinite, and (3) chlorite zone; chlorite-plagioclase-quartz. Major element chemistry shows that characteristic depletion in MgO, CaO, and $Na_2O$ and relative increase in FeO from less altered chlorite zone to extensively altered pyrophyllite zone corresponding to variation in mineral assemblages. The paragenesis of ore minerals, oxygen isotope data, chlorite and illite geothermometry suggest that ore deposit was formed at about $250{\sim}330^{\circ}C$. Both hydrogen and silica activities are high in pyrophyllite zone. Potassium activity increases in sericite zone while hydrogen activity becomes low in chlorite zone. The pyrophyllite zone was formed relatively higher temperature than those of sericite and chlorite zones. The ore fluid was considered to be magmatic water in origin derived from the residual granitic magma which interacted with meteoric water.
Mulgeum, Yangseong, Maeri and Kimhae iron ore deposits in Gyeongnam Province are hydrothermal skarn type magnetite ore deposits in propylitized andesitic rock near the contact with Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The skarn zones away from the vein are quartz-garnet skarn, epidote skarn and epidote-orthoclase skarn. Oxygen isotope analyses of coexisting minerals from andesitic rock, Masanite and major skarn zones, and of magnetite, hematite and quartz were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}^{18}O$ and ${\delta}^{18}O_{H2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothermal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the deep seated Masanite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and occurred the extensive isotopic exchange with the propylitized andesitic rock, and formed the skarns. During these processes, the temperature and ${\delta}^{18}O_{H2O}$ value of hydrothermal solution were lowered gradually. At the main stage of iron ore precipitation, because all the alteration was already finished, the new rising hydrothermal solution formed only the magnetite ore without oxygen isotopic exchange with the wall rock.
Udo Island, some 3 km off the coast of Sungsan Peninsula at the eastern promontory of Cheju Island, occurs in such a regular pattern on the sequences which reprent an excellent example of an eruptive cycle. The island comprises a horseshoe-shaped tuff cone, a nested cinder cone on the crater floor, and a lava delta which extends over northwest from the moat between two cones. The volcanic sequences suggest volcanic processes that start with emergent Surtseyan eruption, progress through Strombolian eruption and end with lava effusion followed by reworking of smooth tephra on the tuff cone. Eruptive environment and hydrology of vent area in the Udo tuff cone are poorly constrained because the stratigraphic units under the tuff cone are unknown. It is thoughl, however, that the tuff cone could be mainly emergent because the present cone deposits show no evidence of marine reworking, and standing body of sea water could play a great role. The emergent volcano is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and a highly mobile slurry. The sea water gets into the vent by flooding accross or through the top or breach of tephra cone. Udo tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting activities in the early stage, late interspersed with continuous uprush activities and proceeded to only continuous uprush activities in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the Surtseyan eruption ceased to transmit into Strombolian activities, which constructed a cinder cone on the crater floor of the tuff cone. The Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the case of Udo, the last magmatic activity was Hawaiian-type (and/or fountain) which accumulated basalt lava delta. And then the loose tephra of the tuff cone reworked over the moat lava and the northeastern flank.
Park, Ki-Hwa;Park, Hee-In;Eastoe, Christopher J.;Choi, Suck-Won
Economic and Environmental Geology
/
v.24
no.2
/
pp.131-150
/
1991
The Weolseong diatreme was temporally and spatially related to the intrusion of the Gadaeri granite, and was -mineralized by meteoric aqueous fluids. In the Nokdong As-Zn deposit, pyrite, aresenopyrite and sphalerite are the most abundant sulfide minerals. They are associated with minor amount of magnetite, pyrrhotite, chalcopyrite and cassiterite, and trace amounts of Pb-Sb-Bi-Ag sulphosalts. The AsZn ore probably occurred at about $350^{\circ}C$ according to fluid inclusion and compositional data estimated from the arsenic content of arsenopyrite and iron content of sphalerite intergrown with pyrrhotite + chalcopyrite + cubanite. Heating studies of fluid inclusions in quartz indicate a temperature range between 180 and $360^{\circ}C$, and freezing data indicate a salinity range from 0.8 to 4.1 eq.wt % NaCl. The coexisting assemblage pyrite + pyrrhotite + arsenopyrite suggests that $H_2S$ was the dominate reduced sulfur species, and defines fluid parameter thus: $10^{-34.5}$ < ${\alpha}_{S_2}$ < $10^{-33}$, $10^{-11}$ < $f_{S_2}$ < $10^{-8}$, -2.4 < ${\alpha}_{S_2}$ < -1.6 atm and pH= 5.2 (sericte stable) at $300^{\circ}C$. The sulfur isotope values ranged from 1.8 to 5.5% and indicate that the sulfur in the sulfides is of magmatic in origin. The carbon isotope values range from -7.8 to -11.6%, and the oxygen isotope values from the carbonates in mineralized wall rock range from 2 to 11.4%. The oxygen isotope compositions of water coexisting with calcite require an input of meteoric water. The geochemical data indicate that the ore-forming fluid probably was generated by a variety of mechanisms, including deep circulation of meteoric water driven by magmatic heat, with possible input of magniatic water and ore component.
Titanomagnetite ore bodies in the Yonchon iron mine are closely associated with alkali gabbroic rocks of middle Proterozoic age which intruded Precambrian metasedimentary rocks. The orebodies can be divided into massive ores in gabbroic rock, skarn ores in calcareous xenoliths and banded ores in gneissic gabbro. Gabbroic rocks from the Yonchon iron mine have unusually high content of $TiO_2$ with an average values of 3.46 wt%. Iron ores are ilmenite (42.25~51.56 wt% in $TiO_2$) and titanomagnetite (1.29~6.57 wt% in $TiO_2$) and the former is dominant Small amount of magnetite, hematite, sphene and sulfide minerals are included in the ores. Grandite garnet, titanoaugite and tschermakite are in iron skarn ores. Hornblendes from ores and gabbroic rocks have a relatively homogeneous isotopic composition with ${\delta}D$ between -110.0 and -133.9‰, and ${\delta}^{18}O$ of +4.5 to +6.5‰, and calculated to have formed in fluids with ${\delta}O_{H_2O}$ of + 6.7 to +8.7‰. and ${\delta}_{H_2O}$ of -87.9 to -111.8‰, which has a similar isotopic value of primary magmatic water. Based on intrusive age, occurrence, mineral chemistry and isotopic compositions of magnetite ores and gabroic rocks, it will be concluded that the gabbroic rocks are responsible for the titanomagnetite mineralization. The titaniferous magnetite melt was immiscibly separated from the high titaniferous gabbroic melts of Proterozoic age.
The Yeongdeog gold-silver deposits at Jipum, Gyeongsangbugdo, is of a middle Paleogene $(45.52{\pm}1.02Ma)$ vein type, and is hosted in shale and sandstone of Cretaceous age. Based on mineral paragenesis, vein structure and mineral assemblages, the ore mineralization can be divided into two distinct depositional stages. The early stage is associated with base-metals such as pyrite, arsenopyrite (27.99~30.99 at%), hematite, rutile, pyrrhotite, sphalerite (10.53~18.42 FeS mole%), chalcopyrite and galena with wallrock alteration such as chlorite, sericite and pyrite. The late stage is characterized by the Au-Ag mineralization such as electrum, Ag-bearing tetrahedrite, freibergite, pyrargyrite, unidentified mineral, pyrite, sphalerite (1.08~5.57 FeS mole%), chalcopyrite and galena. Fluid inclusion data indicate that fluid temperatures and salinities range from 343 to $227^{\circ}C$ and from 8.3 to 5.7 wt% eq. NaCl in early stage, respectively. Temperatures and salinities of NaCl eq. wt% range from 299 to $225^{\circ}C$ and from 12.9 to 4.3 in late stage, respectively. They suggest that complex cooling histories were occured by the mixing of the fluids. Sulfur fugacity $(-logfs_2)$ deduced by mineral assemblages and composition ranges from 8.3 to 14.7 atm. in early stage, and from 8.8 to 14.5 atm. in late stage. It suggests that the mineralization was related to decrease of temperature in early stage and fluctuations of $fS_2$ with decrease of temperature in late stage. Sulfur and oxygen isotope compositions are 4.48~5.60‰ and 9.25~10.8% in early stage, and late stage is 4.84~7.00‰ and 5.7‰, respectively. It indicated that hydrothermal fluids may be magmatic origin with some degree of mixing of another water during paragenetic time.
The Yucheon Bi deposits at Cheongha, Gyeongsangbugdo, is of a middle Paleogene (49 Ma) vein type, and is hosted in sandstone and shale of Banyawal formation in Cretaceous age. Based on mineral paragenesis, vein structure and mineral assemblages, two minera1ization stages were distinguished. The stage I consists of quartz with small amount of chlorite, pyrite, epidote, hal1oysite, vermiculite, serpentine and rutile associated with sericitization. The stage II is characterized by Bi minera1ization such as bismuthinite, Bi-Cu-Pb-S mineral, tetradymite, native gold, pyrite, pyrrhotite, arsenopyrite, wolframite, rutile, hematite, sphalerite, chalcopyrite, galena with alteration of sericite, chlorite, K-feldspar, albite and epidote. Fluid inclusion data indicate that fluid temperature and NaCl equivalent wt.% salinity range from 431 to $150^{\circ}C$ and from 19.2 to 0.18wt.% in the stage II. Evidence of boiling during the base-metal minera1ization indicates pressures 241 to 260 bars. Sulfur fugacity($-log\;f_{S2}$) deduced by mineral assemblages and compositions ranges from 5.1 to 5.7atm in early stage, from > 8.4 atm in middle stage and from 13.5 to 19.3 atm in late stage. It suggests that complex histories of progressive coo1ing, dilution and boiling were occurred by the mixing of the fluids. The ${\delta}^{34}S$, ${\delta}^{18}O$ and ${\delta}D$ data range from 2.5 to 3.9%, -0.5 to -4.1% and -29.7 to -47%, respectively. It indicated that hydrothermal fluids may be magmatic origin with boiling and mixing of meteoric water increasing paragenetic time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.