최근 개인의 성향을 반영한 맞춤형 서비스가 각광 받고 있다. 이와 관련하여 개인의 개성을 인식하고 활용하고자 하는 연구가 지속적으로 이루어지고 있다. 각 개인의 개성을 인식하고 평가하는 방법은 다수가 있지만, OCEAN 모델이 대표적으로 사용된다. OCEAN 모델로 각 개인의 개성을 인식할 때 언어적, 준언어적, 비언어적 정보를 이용하는 멀티 모달리티 기반 인공지능 모델이 사용될 수 있다. 본 논문에서는 비언어적 정보인 사용자의 표정을 기반으로 OCEAN을 인식하는 인공지능 모델에서 영상 데이터에서 얼굴 영역을 추출할 때 지정하는 얼굴 영역 여유값(Margin)에 따른 개성 인식 모델 정확도 성능을 분석한다. 실험에서는 2D Patch Partition, R2plus1D, 3D Patch Partition, 그리고 Video Swin Transformer에 기반한 개성 인식 모델을 사용하였다. 얼굴 영역 추출 시 여유값을 60으로 사용했을 때 1-MAE 성능이 0.9118로 가장 우수하였다. 따라서 개성 인식 모델의 성능을 최적화하기 위해서는 적절한 여유값을 설정해야 함을 확인하였다.
본 연구는 도금욕 공정의 완성도 예측을 위한 시계열 데이터의 효과적인 표현을 목표로, Dynamic Time Warping(DTW) 및 k-Nearest Neighbors(kNN) 기반의 전처리 방법론을 제안한다. 제안된 DTW 기반 kNN 전처리 방법을 다양한 회귀 모델에 적용하여 비교한 결과, 기존 결정 나무(Decision tree) 대비 최대 RMSE에서 43%과 MAE에서 24% 개선된 성능 향상을 보였으며, 신경망 구조를 갖는 회귀 모델과 결합했을 때 성능 향상이 두드러졌다. 본 논문에서 제안하는 전처리 방법과 회귀 모델을 결합한 구조는 길이가 긴 시계열 데이터와 제한된 데이터 샘플이 있는 상황에서 적합할 것으로 사료되며, 데이터가 부족한 상황에서도 과적합의 위험을 감소시키며, 합리적인 예측을 가능하게 함을 시사한다. 그러나 DTW 및 kNN 알고리즘은 데이터 샘플이 많아질수록 연산량이 늘어난다는 한계가 존재하며, 향후 연구를 통해 이러한 계산 효율성의 문제를 개선할 수 있는 연구가 필요할 것으로 보인다.
국소복합분위수 회귀모형을 활용한 비모수적 함수 추정방법이 높은 효율성과 더불어 활발히 연구되고 있다. 이러한 추정과정에 커널을 사용한 자료 평활방법이 대표적으로 사용되고 있으며, 그 성능은 커널보다는 평활계수의 선택 크게 의존한다. 한편, 회귀함수 추정방법의 성능을 평가하는 기준으로는 통상적으로 $L_2$-노름이 사용되어 평균제곱오차 또는 평균적분제곱오차를 최소화하는 평활계수의 선택에 대한 많은 연구가 진행되어 왔다. 본 논문에서는 국소선형 복합 분위수 회귀방법을 활용한 비모수 회귀모형 추정량의 성능을 결정하는 평활계수 선택의 최적성에 관해 연구하였다. 특히, 여러 장점을 가졌으나 수리적 어려움으로 연구가 미흡한 평균절대오차 및 평균적분절대오차를 최적의 기준으로 삼아 최적의 평활계수를 구하고 그 유일성에 관해 연구하였다. 나아가 기존의 평가기준인 평균제곱오차 및 평균적분제곱오차를 사용한 선택과의 관계를 파악하고 그 성능을 비교하였다. 이러한 과정에서 다양한 상황에서의 모의실험을 통해 제안한 방법의 특성을 규명하였다.
본 연구는 사용자 평점 이외에 사용자 간 직접 간접적 신뢰 및 불신 관계 네트워크의 분석 결과를 추가로 반영한 새로운 하이브리드 협업필터링(Collaborative filtering, CF) 추천방법을 제안한다. 구체적으로 사용자 간의 유사도를 계산할 때 사용자 평가점수의 유사성만을 고려하는 기존의 CF와 다르게, 사용자 신뢰 및 불신 관계 데이터의 사회연결망분석 결과를 추가적으로 고려하여 보다 정교하게 사용자 간의 유사도를 산출하였다. 이 때, 사용자 간의 유사도를 재조정하는 접근법으로 특정 이웃 사용자가 신뢰 및 불신 관계 네트워크에서 높은 신뢰(또는 불신)를 받을 때, 추천 대상이 되는 사용자와 해당 이웃 간의 유사도를 확대(강화) 또는 축소(약화)하는 방안을 제안하고, 더 나아가 최적의 유사도 확대 또는 축소의 정도를 결정하기 위해 유전자 알고리즘(genetic algorithm, GA)을 적용하였다. 본 연구에서는 제안 알고리즘의 성능을 검증하기 위해, 특정 상품에 대한 사용자의 평가점수와 신뢰 및 불신 관계를 나타낸 실제 데이터에 추천 알고리즘을 적용하였으며 그 결과, 기존의 CF와 비교했을 때 통계적으로 유의한 수준의 예측 정확도 개선이 이루어짐을 확인할 수 있었다. 또한 신뢰 관계 정보보다는 불신 관계 정보를 반영했을 때 예측 정확도가 더 향상되는 것으로 나타났는데, 이는 사회적인 관계를 추적하고 관리하는 측면에서 사용자 간의 불신 관계에 대해 좀 더 주목해야 할 필요가 있음을 시사한다.
우리나라에서는 2005년부터 전국 에어코리아(Air Korea) 측정소의 대기오염도 정보를 실시간으로 제공하고 있다. 선행연구들은 이러한 포인트 기반의 미세먼지 농도 자료에 대한 격자지도화 가능성을 보여준 바 있으나, 측정소가 밀집된 특정 도시만을 대상으로 하였다. 본 연구에서는 우리나라 전역의 PM10 일평균 격자 지도를 산출하기 위해서, 전국 333개 에어코리아 측정소 자료를 활용하여 베리오그램 최적화 기반의 정규크리깅을 수행하고, 검증지점의 공간적인 과밀(too dense) 및 과소(too sparse)를 방지하기 위하여 검증지점의 위치에 따른 선별적 임의추출을 통한 암맹평가를 실시하였다. 114,745건의 데이터로부터 365일 각각 다른 검증지점을 추출하는 암맹평가를 4회에 걸쳐 수행한 결과, MAE=5.697 ㎍/m3, CC=0.947의 정확도 통계량이 산출되어, 매우 효과적인 공간내삽이 이루어졌음을 확인할 수 있었다. 또한, PM10 고농도 사례(나쁨 및 매우 나쁨)로 분류된 1,500건 이상에 대해서도 MAE=11~12 ㎍/m3, CC=0.870~873의 정확도를 나타냈으며, 이는 본 연구의 방법론이 다양한 상황에 적용가능함을 의미한다. 2019년 365일에 대해 산출된 0.05° 해상도의 일평균 PM10 격자지도는 자연스러운 공간분포를 나타내는 것이 시각적으로도 확인되었다. 이러한 PM10 농도의 격자지도는 향후의 연구에서 익일 PM10 농도의 격자예측을 위한 입력자료로 활용될 수 있을 것이다.
도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.
추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.
이미지 인식 및 영상처리, 컴퓨터 비전 등의 분야에서 합성곱 인공신경망 (Convolutional Neural Network, CNN)은 다양하게 응용되고 탁월한 성능을 내고 있다. 본 논문에서는 CNN을 활용한 이미지 인식 시스템에서 인식률을 저하시키는 요인 중 하나인 이미지의 회전에 대한 해결책으로써 CNN 기반 이미지 회전 보정 알고리즘을 제안한다. 본 논문에서는 Leeds Sports Pose 데이터셋을 활용하여 이미지를 임의의 각도만큼 회전시킨 학습데이터로 인공지능 모델을 학습시켜 출력으로 회전된 각도를 추정하도록 실험을 진행하였다. 학습된 인공지능 모델을 100장의 테스트 데이터 이미지로 실험하여 mean absolute error (MAE) 성능지표를 기준으로 4.5951의 값을 얻었다.
본 논문은 영상을 획득할 때 잡음센서나 통신채널 불량으로 흔히 생기는 임펄스 잡음을 효율적으로 제거하는 방법에 대해 논의 하고자 한다. 제안된 방법은 잡음 픽셀 검출과 추정이라는 두 단계에 의해 이루어진다. 임펄스 잡음 검출기를 통하여 영상 전체에 걸쳐 잡음 픽셀여부를 검출한 후 잡음 픽셀로 판정되면 주변의 잡음 픽셀 개수에 따라 적응력 있게 $3{\times}3$ 윈도우의 가중평균 혹은 $5{\times}5$ 윈도우의 가중평균을 사용하여 추정한다. 제안된 방법의 성능을 평가하기 위해 영상실험을 통하여 기존의 잡음 제거 방법들과 정성적인 비교, PSNR과 MAE를 통한 정량적인 비교 그리고 수행 시간을 측정한 결과 제안된 방법은 잡음 제거는 물론 원영상에 대한 상세한 정보 보존력이 뛰어나고 수행 시간 면에서도 우수함을 보였다.
본 연구의 목적은 좀 더 정확한 고객 선호도 예측을 위한 협업 필터링 알고리즘의 예측 성능을 평가하기 위한 것이다. 고객 선호도 예측의 정확도를 비교하기 위하여 이웃 기반의 협업 필터링 알고리즘과 대응평균 알고리즘에 의한 고객 선호도 예측의 MAE를 비교하였다. 예측 알고리즘의 정확성을 분석하기 위하여 MovieLens 1 Million dataset을 이용하여 실험을 하였다. 각 예측 알고리즘에 사용된 유사도 가중치는 일반적으로 이용되는 피어슨 상관계수와 벡터 유사도를 이용하였으며 분석결과 대응평균 알고리즘의 예측 정확도가 이웃 기반의 협업 필터링 알고리즘의 예측 정확도 보다 우수한 것으로 나타났다. 두 알고리즘에 사용된 유사도 가중치인 피어슨 상관계수와 벡터 유사도는 두 고객이 특정 상품에 대하여 공통으로 평가한 선호도 평가치를 이용하여 계산된다. 이때 공통으로 평가한 선호도 평가치의 개수가 적으면 계산된 유사도 가중치가 과대 평가된다. 과대 평가된 유사도 가중치를 보정하여 고객 선호도 예측의 정확도를 높이기 위하여 기존의 연구에서 고려한 공통 평가 영화의 개수 보다 확대된 범위를 적용하였으며 각 예측 방법에 따라 서로 다른 개선 경향을 파악할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.