• Title/Summary/Keyword: macrophage functions

Search Result 120, Processing Time 0.024 seconds

Comparison of Cytokine and Nitric Oxide Induction in Murine Macrophages between Whole Cell and Enzymatically Digested Bifidobacterium sp. Obtained from Monogastric Animals

  • Kim, Dong-Woon;Cho, Sung-Back;Lee, Hyun-Jeong;Chung, Wan-Tae;Kim, Kyoung-Hoon;HwangBo, Jong;Nam, In-Sik;Cho, Yong-Il;Yang, Mhan-Pyo;Chung, Il-Byung
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.305-310
    • /
    • 2007
  • The principal objective of this study was to compare the effects of whole and hydrolyzed cells (bifidobacteria) treated with gastrointestinal digestive enzymes on the activation of cloned macrophages. Seven different strains of Bifidobacterium obtained from swine, chickens, and rats, were digested with pepsin followed by pancreatin and the precipitate (insoluble fraction) and supernatant (soluble fraction) obtained via centrifugation. The RAW 264.7 murine macrophages were incubated with either whole cells, the precipitate, or supernatant at various concentrations. Pronounced increases in the levels of nitric oxide (NO), interleukin $(IL)-1{\beta}$, IL-6, IL-12, and tumor necrosis factor $(TNF)-{\alpha}$ were observed in the whole cells and precipitates, but these effects were less profound in the supernatants. The precipitates also evidenced a slight, but significant, inductive activity for NO and all tested cytokines, with the exception of $(TNF)-{\alpha}$ in the macrophage model as compared with the whole cells. By way of contrast, $(TNF)-{\alpha}$ production when cultured with whole cells (100 ng/ml) resulted in marked increases as compared with what was observed with the precipitates. The results of this study indicated, for the first time, that digested Bifidobacterium sp. can induce the production of NO and several cytokines in RAW 264.7 murine macrophage cells. In the current study, it was demonstrated that Bifidobacterium strains treated with digestive enzymes, as compared with whole cells, are capable of stimulating the induction of macrophage mediators, which reflects that they may be able to modulate the gastrointestinal immune functions of the host.

Expression Analysis of Chicken Interleukin-34(IL-34) for Various Pathogenic Stimulations (주요 병원균 자극에 의한 닭의 Interleukin-34 발현 분석 비교)

  • Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.111-122
    • /
    • 2021
  • Recently, interleukin 34 (IL-34) was identified as the second functional ligand for macrophage colony-stimulating factor receptor (M-CSFR). IL-34 functions similarly to M-CSF through its binding to the M-CSFR. There is still insufficient information on IL-34 in chickens, which has until now been reported only through predicted sequences and not through experimental research. Thus, to confirm its expression and to determine its potent biological activity, several chicken lines and cell lines were used. Cloning of recombinant chicken IL-34 and M-CSF genes was performed to investigate their modulatory effects on proinflammatory cytokine expression in vitro. The expression levels of IL-34, M-CSF, and M-CSFR genes were upregulated in broiler chickens with leg dysfunction (cause unknown). However, IL-34 was downregulated in most pathogen-stimulated tissues. M-CSFR expression was enhanced by recombinant IL-34 and M-CSF proteins in vitro. IFN-γ expression was enhanced by recombinant IL-34, but not by M-CSF. However, IL-12 expression was not regulated in any of the treated cells, and IL-1β was decreased in all tissues. These results indicate that IL-34 and M-CSF have roles in both the classical and alternative macrophage activation pathways. Collectively, our findings demonstrate the expression of IL-34 in chickens for pathogenic trials, both in vitro and in vivo. Our results suggest that the IL-34 protein plays a role in both pro- and anti-inflammatory functions in macrophages. Therefore, further research is needed to determine the cytokines or chemokines that can be induced by IL-34 and to further elucidate the functions of IL-34 in the inflammatory pathway.

Enhancement of Mucosal Immune Functions by Dietary Spirulina platensis in Human and Animals

  • Osamu Hayashi;Kyoko Ishii;Chinami Kawamura;Hei, Shi-Yen;Bao, Ning-Ye;Tomohiro Hirahashi;Toshimitsu Katoh
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.31-34
    • /
    • 2004
  • This paper reviews the effects of Spirulina platensis and its extracts and phycocyanin, a blue photosynthetic pigment protein in Spirulina on the mucosal immune functions in humans and animals as follows: TEX>$\bullet$ IgA antibody response and other classes in mucosal immunity of mice treated with Spirulina platensis and its extract. $\bullet$ Effect of Spirulina phycocyanin ingestion on the mucosal antibody responses in mice. - Distinct effects of phycocyanin on secretory IgA and allergic IgE antibody responses in mice following oral immunization with antigen-entrapped biodegradable microparticles. $\bullet$ Influence of dietary Spirulina platensis on IgA level in human saliva. $\bullet$ A study on enhancement of bone-marrow cell-proliferation and differentiation by Spirulina platensis in mice: in vivo and in vitro study

TNF in Human Tuberculosis: A Double-Edged Sword

  • Jae-Min Yuk;Jin Kyung Kim;In Soo Kim;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.4.1-4.19
    • /
    • 2024
  • TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.

Effects of some organophosphate pesticides on the murine immune system following subchronic exposure 2

  • Moon, Chang-Kiu;Yun, Yeo-Pyo;Lee, Soo-Hwan
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.183-187
    • /
    • 1986
  • Some of organophosphate pesticides which are the most heavily used in Korea, were examined for their effects on the murine immune system. Immunotoxicological assay parameters adaopted in this study were Arthus reaction for humoral immunity, delayed type hypersensitivity reaction for cell mediate immunity, carbon clearance for macrophage function and susceptiility to tumor challenge. Subchronic exposure of rodents to the pesticides resulted in the marked suppression of immune functions and enhancement of susceptibility to tumor challenge. Among the pesticides tested (fenitrothion, fenthion, diazinon and EPN), fenitrothion was the most suppressive in Arthus and delayed type hypersensitivity reaction.

  • PDF

Effects of Erythrosine on Murine Immune Functions and Methemoglobin Formation (식품 첨가물의 면역독성 및 혈액독성 - Erythrosine이 마우스의 면역기능과 Methemoglobin형성에 미치는 영향 -)

  • 황미경;윤혜정;유충규;문창규
    • Journal of Food Hygiene and Safety
    • /
    • v.2 no.4
    • /
    • pp.191-196
    • /
    • 1987
  • Erythrosine used as a colouring agent in drugs, cosmetics and foods in Korea, was examined for its effects on murine immune system and methemoglobin formation. As immunotoxicologic assay parameters, we adopted circulating leukocytes and immunoorgan weights for pathotoxicology, IgM plaque forming cells and arthus reaction for humoral immunity, delayed hypersensitivity reaction of cell mediated immunity and carbon clearacnce for macrophage function. Erythrosine's effects were observed as follows; 1. Ery throsine showed no significant effects on circulating leulocyte counts and relative immunoorgan weight. 2. Erythrosine diminished IgM plaque forming cells. 3. Erythrosine decreased arthus reaction, in the dose dependent manner. 4. Erythrosine had no significant effect on delayed hypersensitivity. 5. Phagocytic and corrected phagocytic index were not affected. 6. Methemoglobin content was similar in the test and control groups.

  • PDF

Effects of Diazinon on the Murine Host Defense System

  • Yun, Yeo-Pyo;Kim, Kwan-Hoi;Lee, Se-Chang;Hong, Jin-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.2
    • /
    • pp.91-97
    • /
    • 1992
  • Diazinon which is one of the most beavily used organophosphate pesticide in Korea, was examined for its effects on the murine host defense system. Immunotoxicological assay parameters adopted in this study were carbon clearance for macrophage function, susceptibility to tumor challenge, and pathotoxicological indicators, Subchronic exposure of pesticide to rodents resulted in the suppression of immune functions, enhancement of susceptibility to tumor challenge, and moderate histological changes of lymphoid organ without any significant alteration of clinical status.

  • PDF

The Chemical Characteristics and Immune-Modulating Activity of Polysaccharides Isolated from Cold-Brew Coffee

  • Shin, Kwang-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2017
  • To elucidate new biological ingredients in cold-brew coffee extracted with cold water, crude polysaccharide (CCP-0) was isolated by ethanol precipitation, and its immune-stimulating activities were assayed. CCP-0 mainly comprised galactose (53.6%), mannose (15.7%), arabinose (11.9%), and uronic acid (12.4%), suggesting that it might exist as a mixture of galactomannan and arabinogalactan. CCP-0 significantly increased cell proliferation on both murine peritoneal macrophages and splenocytes in a dose dependent manner. CCP-0 also significantly augmented nitric oxide and reactive oxygen species production by murine peritoneal macrophages. In addition, macrophages stimulated by CCP-0 enhanced production of various cytokines such as tumor necrosis factor-${\alpha}$, interleukin (IL)-6, and IL-12. In an in vitro assay for intestinal immune-modulating activity, CCP-0 showed higher bone-marrow cell-proliferation activity through Peyer's patch cells at $100{\mu}g/mL$ than the negative control. These results suggest that CCP-0 may potentially enhance macrophage functions and the intestinal immune system.

Impact of tumour associated macrophages in pancreatic cancer

  • Mielgo, Ainhoa;Schmid, Michael C.
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.131-138
    • /
    • 2013
  • During cancer progression, bone marrow derived myeloid cells, including immature myeloid cells and macrophages, progressively accumulate at the primary tumour site where they contribute to the establishment of a tumour promoting microenvironment. A marked infiltration of macrophages into the stromal compartment and the generation of a desmoplastic stromal reaction is a particular characteristic of pancreatic ductal adenocarcinoma (PDA) and is thought to play a key role in disease progression and its response to therapy. Tumour associated macrophages (TAMs) foster PDA tumour progression by promoting angiogenesis, metastasis, and by suppressing an anti-tumourigenic immune response. Recent work also suggests that TAMs contribute to resistance to chemotherapy and to the emergence of cancer stem-like cells. Here we will review the current understanding of the biology and the pro-tumourigenic functions of TAMs in cancer and specifically in PDA, and highlight potential therapeutic strategies to target TAMs and to improve current therapies for pancreatic cancer.

Roles of heterogenous hepatic macrophages in the progression of liver diseases

  • Lee, Kyeong-Jin;Kim, Mi-Yeon;Han, Yong-Hyun
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.166-174
    • /
    • 2022
  • Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.