• Title/Summary/Keyword: macrocycle L

Search Result 38, Processing Time 0.022 seconds

Synthesis and Characterization of New Polyaza Macrocyclic Nickel(Ⅱ) and Copper(Ⅱ) Complexes Two Nitrile or Imidate Ester Pendant Arms: Metal-Mediated Hydrolysis and Alcoholysis of the Nitrile Groups

  • Kang, Shin-Geol;Song, Jeong-Hoon;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.824-829
    • /
    • 2002
  • New di-N-cyanomethylated tetraaza macrocycle 2.13-bis(cyanomethyl)-5.16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^7.12$]docosane $(L^2)$ has been prepared by the reaction of 3, 14-dimethyl-2,6,13,17-tetraazatricyclo $(L^1)$ with bromoacetonitrile. The square-planar complexes $[ML^2](ClO_4)_2(M=Ni(II)$ or Cu(II) can be prepared by the reaction of $L^2$ with the corresponding metal ion in acetonitrile. The cyanomethyl groups of $[ML^2](ClO_4)_2readily$ react with water to $yield[ML^3](ClO_4)_2$ containing pendant amide groups. The trans-octahedral complexes $[ML^4](ClO_4)_2$, in which two imidate ester groups are coordinated to the metal ion, can be also prepared by the reaction of $[ML^2](ClO_4)_2with$ methanol under mild conditions. The hydrolysis and alcoholysis reactions of $[ML^2](ClO_4)_2are$ promoted by the central metal ion, in spite of the fact that the cyanomethyl group is not involved in intramolecular coordination. The reactions are also promoted by a base such as triethylamine but are retarded by an $acid(HClO_4).Interestingly$, the imidate ester groups of $[ML^4]^2$ are unusually resistant to hydrolysis even in 0.1 M $HCIO_4$ or 0.1 M NaOH aqueous solution. Crystal structure of $[NiL^4](ClO_4)_2shows$ that the Ni-N (pendant imidate ester group) bond is rlatively strong; the Ni-N bond distance is shorter then the Ni-N(tertiary) distance and is similar to the Ni-N (secondary) distance.

Synthesis and Characterization of C-meso and C-racemic Isomers of a Reinforced Tetraaza Macrocycle and Their Copper(II) Complexes

  • Jeong, Gyeong Rok;Kim, Juyoung;Kang, Shin-Geol;Jeong, Jong Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2043-2048
    • /
    • 2014
  • Two isomers of a new tetraaza macrotricycle 2,2,4,9,9,11-hexaazamethyl-1,5,8,12-tetraazatricyclo[$10.2.2^{5.8}$]-octadecane ($L^2$) containing additional N-$CH_2CH_2$-N linkages, C-meso-$L^2$ and C-racemic-$L^2$, have been prepared by the reaction of 1-bromo-2-chloroethane with C-meso-$L^1$ or C-racemic-$L^1$ ($L^1$ = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both C-meso-$L^2$ and C-racemic-$L^2$ react with copper(II) ion to form $[Cu(C-meso-L^2)]^{2+}$ or $[Cu(C-racemic-L^2)]^{2+}$ in dehydrated ethanol, but do not with nickel(II) ion under similar conditions. Crystal structure of [Cu(C-racemic-$L^2$)($H_2O$)]$(ClO_4)_2$ shows that the complex has distorted square-pyramidal coordination geometry with an apically coordinated water molecule. Unexpectedly, the Cu-N distances [2.016(3)-2.030(3) ${\AA}$] of [Cu(C-racemic-$L^2$)($H_2O$)]$(ClO_4)_2$ are longer than those [1.992(3)-2.000(3) ${\AA}$] of [Cu(C-racemic-$L^1$)($H_2O$)]$(ClO_4)_2$. As a result, $[Cu(C-racemic-L^2)(H_2O)]^{2+}$ exhibits weaker ligand field strength than $[Cu(C-racemic-L^1)(H_2O)]^{2+}$. The copper(II) complexes readily react with CN- ion to yield the cyano-bridged dinuclear complex $[Cu_2(C-meso-L^2)_2CN]^{3+}$ or $[Cu_2(C-racemic-L^2)_2CN]^{3+}$. Spectra and chemical properties of $[Cu(C-meso-L^2)]^{2+}$ and $[Cu_2(C-meso-L^2)_2CN]^{3+}$ are not quite different from those of $[Cu(C-racemic-L^2)]^{2+}$ and $[Cu_2(C-racemic-L^2)_2CN]^{3+}$, respectively.

Three Cyanide-Bridged One-Dimensional Single Chain CoIII-MnII Complexes: Rational Design, Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Zhao, Zengdian;Wang, Ping;Chen, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1581-1585
    • /
    • 2012
  • Two pyridinecarboxamide dicyanidecobalt(III) building blocks and two mononuclear seven-coordinated macrocycle manganese(II) compounds have been rationally selected to assemble cyanide-bridged heterobimetallic complexes, resulting in three cyanide-bridged $Co^{III}-Mn^{II}$ complexes. Single X-ray diffraction analysis show that these complexes $\{[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}CH_3OH{\cdot}0.5H_2O$ ($\mathbf{1}$), $\{[Mn(L^2)][Co(bpb)]\}ClO_4{\cdot}0.5CH_3OH$ ($\mathbf{2}$) and ${[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}H_2O$ ($\mathbf{3}$) ($L^1$ = 3,6-diazaoctane-1,8-diamine, $L^2$ = 3,6-dioxaoctano-1,8-diamine; $bpb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)benzenate, $bpmb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate) all present predictable one-dimensional single chain structures. The molecular structures of these one-dimensional complexes consists of alternating units of $[Mn(L)]^{2+}$ ($L=L^1$ or $L^2$) and $[Co(L^{\prime})(CN)2]^-$ ($L^{\prime}=bpb2^{2-}$, or $bpmb2^{2-}$), forming a cyanide-bridged cationic polymeric chain with free $ClO_4{^-}$ as the balance anion. The coordination geometry of manganese(II) ion in the three one-dimensional complexes is a slightly distorted pentagonal-bipyrimidal with two cyanide nitrogen atoms at the trans positions and $N_5$ or $N_3O_2$ coordinating mode at the equatorial plane from ligand $L^1$ or $L^2$. Investigation over magnetic properties of these complexes reveals that the very weak magnetic coupling between neighboring Mn(II) ions connected by the diamagnetic dicyanidecobalt(III) building block. A best-fit to the magnetic susceptibility of complex ${\mathbf}{1}$ leads to the magnetic coupling constants $J=-0.084(3)cm^{-1}$.

Interaction of the Post-transition Metal Ions and New Macrocycles in Solution

  • Jung, Oh-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.687-691
    • /
    • 1993
  • Complexation of $Cd^{2+},\;Pb^{2+}\;and\;Hg^{2+}$ ions with four cryptands were studied by potentiometry and solution calorimetry in various weight percent methanol-aqueous solvent at 25${\circ}$C under $CO_2$free nitrogen atmosphere. The stabilities of the complexes were dependent on the cavity size of macrocycles. The $Hg^{2+}$ ion stability constants are higher than those of $Cd^{2+}\;and\;Pb^{2+}$ ion. All the cryptands formed complexes having 1 : 1 (metal to ligand) mole-ratio except for $Hg^{2+}-L_1$ (cryptand 1,2b: 3,5-benzo-9,14,17-trioxa-1,7-diazabicyclo-(8,5,5) heptadecane) and $Cd^{2+}-L_2$ (cryptand 2,2b: 3,5-benzo-10,13,18,21-tetraoxa-1,7-diazabicyclo (8,5,5) eicosane) complexes. $Hg^{2+}-L_1$ complex was a sandwitch type, and the $Cd^{2+}-L_2$ complex showed two stepwise reactions. Thermodynamic parameters of the $Cd^{2+}-L_2$ complex were $6.08(log\;K_1)$, -7.28 Kcal/mol $({\Delta}H_1)$, and $4.78\;(log\;K_2)$, -4.62 Kcal/mol $({\Delta}H_2)$, respectively, for 1 : 1 and 2: 1 mole-ratio. The sequences of the selectivity were increased in the order of $Hg^{2+}\;>Pb^{2+}\;>Cd^{2+}$ ion for $L_3\;and\;L_4$ macrocycles, and the $L_2$-macrocycle has a selectivity for $Cd^{2+}$ ion relative to $Zn^{2+},\;Ni^{2+},\;Pb^{2+}\;and\;Hg^{2+}$ ions. Thus, it is expected that the $L_2$ can be used as carrier for seperation of the post transition metals by macrocycles-mediated liquid membrane because $L_2$ is not soluble in water, and the difference of stability constants of the metal complexes with $L_2$ are large as compared with the other transition metal complexes. The $^1H\;and\;^{13}C-NMR studies indicated that the nitrogen atoms of cryptands have greater affinity to the post transition metal ions than the oxygen atoms, and that the planarities of the macrocycles were lost by complexation with the metal ions because of the perturbation of ring current of benzene molecule attached to macrocycles and counter-anions.

Chemical Equilibria of Lanthanides{Ln(Ⅲ)=Pr, Sm, Gd, Dy}-Macrocyclic Complexes with Auxiliary Ligands in $CH_3OH$(PartⅡ):Study of the Coordination of Oxygen-Containing Bases. ($CH_3OH$ 용매에서 란탄족 원소{Ln(Ⅲ)=Pr, Sm, Gd, Dy}-거대고리 착물과 보조 리간드 간의 화학평형 (제2보): 주게원자가 산소인 염기를 중심으로 고찰.)

  • Byun, Jong Chul;Park, Yu Chul;Han, Chung Hun
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.628-635
    • /
    • 1999
  • Direct preparative method of 2,6-diformyl-p-cresol and 2-hydroxy-3-hydroxy-5-methylbenzaldehyde from 2,6-bis(hydroxymethyl)-4-methylphenol using activated $Mn(IV)O_2$ was described. Hexadentate compartmental Iigands, $H_4L[A]\;and\; H_4L[B]$ were prepared by condensation reactions of 2-hydroxy-3-hydroxy methyl-5-methylbenzaldehyde with ethylenediamine and 1,3-diaminopropane respectively. By the reaction of macrocycle($H_4[20]DOTA$) with Ln(III) nitrate {Ln(III)=Pr, Sm, Cd, Dy }, discrete mononuclear Ln(III) complexes of the type $[Ln(H_2[20]DOTA)(ClO_4)(H_2O)]\;{\cdot}\;3H_2O$ were synthesized in the solid state. $[Ln([20]DOTA)(NO_3)(H_2O)](NO_3)_2\;{\cdot}\;xH_2O$ was placed in methanol for 2 days, and $[Ln([20]DOTA)(NO_3)(CH_3OH)]^{2+}$ was formed. The equilibrium constants(K) for the substitution of coordinated $CH_3OH$ in the Ln-[20]DOTA complexes by various auxiliary ligand, $L_a$(=salicylic acid, p-chlorobenzoic acid, benzoic acid, acetic acid, 4-bromophenol) were determined spectroscopically at 25$^{\circ}C$ and 0.1M $NaClO_4$. The K values calculated were in the order of salicylic acid > p-chlorobenzoic acid > benzoic acid > acetic acid > 4-bromophenol, while pKa of auxiliary ligands was in the opposite trend.

  • PDF

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part IV); Synthesis and Characterization of Cr(III)-Acetylacetonato, -Malonato and -Oxalato Macrocyclic Complexes

  • Byun, Jong-Chul;Han, Chung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1395-1402
    • /
    • 2005
  • The reaction of cis-[Cr([14]-decane)$(OH)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = acetylacetonate (acac), oxalate (ox) or malonate (mal)} leads to a new cis-[Cr([14]-decane)(acac)]$(ClO_4)_2{\cdot}(1/2)H_2O\;(1),\;cis-[Cr([14]-decane)(ox)]ClO_4{\cdot}(1/2)H_2O\;(2)\;or\;cis-[Cr([14]-decane)(mal)]ClO_4{\cdot}(1/4)H_2O\;(3)$. These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[Cr([14]-decane)(acac)]$(ClO_4)_2{\cdot}(1/2)H_2O$ reveals that central chromium(III) has a distorted octahedral coordination environment and two acetylacetonate-oxygen atoms are bonded to the chromium(III) ion in the cis positions. The angle $N_{axial}-Cr-N_{axial}$ deviates by $11^{\circ}$ from the ideal value of $180^{\circ}$ for a perfect octahedron. The bond angle O-Cr-O between the chromium(III) ion and the two acetylacetonate-oxygen atoms is close to $90^{\circ}$. The bond lengths of Cr-O between the chromium and the acetylacetonate-oxygen atoms are 1.950(3) and 1.954(2) $\AA$. They are shorter than those between chromium and nitrogen atoms of the macrocycle. The IR spectra of 1, 2 and 3 display bands at 1560 {ν (C=O)}, 1710 {${\nu}_{as}$(OCO)} and 1660 $cm^{-1}$ {${\nu}_{as}$(OCO)} attributed to the acac, ox and mal auxiliary ligands stretching vibrations, respectively.

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part III); Synthesis and Characterization of Cr(III)-Isothiocyanato, -Azido and -Chloroacetato Macrocyclic Complexes

  • Byun, Jong-Chul;Han, Chung-Hun;Park, Yu-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1044-1050
    • /
    • 2005
  • The reaction of cis-[Cr([14]-decane)($OH_2)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = isothiocyanate ($NCS^-$), azide ($N3^-$) or chloroacetate(caa)} leads to a new cis-[Cr([14]-decane)($NCS)_2]ClO_4{\cdot}H_2O$ (1), cis-[Cr([14]-decane)($N_3)_2]ClO_4$ (2) or cis-[Cr([14]-decane)($caa)_2]ClO_4$ (3). These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[Cr([14]-decane)($NCS)_2]ClO_4{\cdot}H_2O$ reveals that central chromium(III) has a distorted octahedral coordination environment and two $NCS^-$anions are bonded to the chromium(III) ion via the Ndonor atom in the cis positions. The angle $N_{axial}-Cr-N_{axial}$ deviates by 13$^{\circ}$ from the ideal value of 180$^{\circ}$ for a perfect octahedron. The bond angle N-Cr-N between the Cr(III) ion and the two nitrogen atoms of the isothiocyanate ligands is close to 90$^{\circ}$. The bond lengths of Cr-N between the chromium and $NCS^-$groups are 1.964(5) and 2.000(5) $\AA$. They are shorter than those between chromium and nitrogen atoms of the macrocycle. The IR spectra of 1, 2 and 3 display bands at 2073, 1344 and 1684 $cm^{-1}$ attributed to the $NCS^-$, ${N_3}^-$ and caa groups stretching vibrations, respectively.

Chemical Reactivity between Ni(II)-Macrocycle Complex Ions ($NiL_m{^{2+}}$) and $CN^-$ (Ni(II)-거대고리 리간드 착이온 ($NiL_m{^{2+}}$) 과 $CN^-$ 이온간의 반응성)

  • Yu-Chul Park;Jong-Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.334-343
    • /
    • 1987
  • The Chemical reactions between $NiL_m{^{2+}}\{$Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}$}\and\ CN^-$ ion were studied by the spectrophotometric method. The equilibrium constants (K_1$) for the 1:1 complex ion, $[NiL_m(CN)]^+\;with\;NiL_m{^{2+}}\;and\;CN^-$ ion were determined in the range of 3 to $25^{\circ}C$. The $K_1\;for\;Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;at\;15^{\circ}C$ was 4.7, 5.3, 6.2, 7.5, 9.4, and 9.8, respectively. The values of $K_1$ decreased with increasing temperature. From the temperature effect on equilibrium constant ($K_1$), thermodynamic parameters $({\Delta}H^{\circ},\;{\Delta}S^{\circ},\;{\Delta}G^{\circ})$ for reaction were evaluated and the reaction of $NiL_m{^{2+}}\;and\;CN^-$ ion was exothermic. $NiL_m{^{2+}\;reacts\;with\;CN^-$ ion to give $Ni(CN)_4{^{2-}}$ ion and macrocyclic ligand $(L_m)$. The kinetics of formation of the $Ni(CN)_4{^{2-}}$ ion of varying the $[CN^-],\;[HCN],\;and\;[OH^-]$ have been investigated at 3∼$25^{\circ}C\;and\;0.5M\;NaClO_4$. Maintaining a constant $[CN^-],\;k_{obs}/[CN^-]^2$ increases linearly with increasing [HCN]. In the presence of large quantities of $[OH^-],\;k_{obs}/[CN^-]^2$ also increases linearly with $[OH^-]$. From the temperature effect on kinetic constant (k_{obs})$, parameter of activation $({\Delta}H^{\neq},\;{\Delta}S^{\neq})$ of reaction of $NiL_m{^{2+}}\;with\;CN^-$ ion were determined. For the $Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;series\;{\Delta}H^{\neq}$ gradually decrease as the d-d transition energy, $ν(cm^{-1})$ decrease. And the reaction of the five $NiL_m{^{2+}}\;with\;CN^-$ ion take place by way of equal paths.

  • PDF