Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part IV); Synthesis and Characterization of Cr(III)-Acetylacetonato, -Malonato and -Oxalato Macrocyclic Complexes

Jong Chul Byun* and Chung Hun Han
Department of Chemistry, Research Institute for Basic Sciences, Cheju National University, Jeju 690-756, Korea
*E-mail: jchbyun@cheju.ac.kr
Received May 6, 2005

Abstract

The reaction of cis-[$\mathrm{Cr}([14]$-decane $\left.)(\mathrm{OH})_{2}\right]^{+}$([14]-decane $=$rac-5,5,7,12,12,14-hexamethyl-1,4,8,11teraazacyclotetradecane) with auxiliary ligands $\left\{\mathrm{L}_{\mathrm{a}}=\right.$ acetylacetonate (acac), oxalate (ox) or malonate (mal) \} leads to a new $c i s-[\mathrm{Cr}([14]-$ decane $)(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}(\mathbf{1}), c i s-[\mathrm{Cr}([14]$-decane $)(\mathrm{ox})] \mathrm{ClO}_{4} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}(\mathbf{2})$ or cis-[$\mathrm{Cr}([14]$-decane $)(\mathrm{mal})] \mathrm{ClO}_{4} \cdot(1 / 4) \mathrm{H}_{2} \mathrm{O}(3)$. These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[Cr([14]-decane) $(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$ reveals that central chromium(III) has a distorted octahedral coordination environment and two acetylacetonate-oxygen atoms are bonded to the chromium(III) ion in the cis positions. The angle $\mathrm{N}_{\mathrm{axial}}-\mathrm{Cr}-\mathrm{N}_{\text {axial }}$ deviates by 11° from the ideal value of 180° for a perfect octahedron. The bond angle O-Cr-O between the chromium(III) ion and the two acetylacetonate-oxygen atoms is close to 90°. The bond lengths of $\mathrm{Cr}-\mathrm{O}$ between the chromium and the acetylacetonate-oxygen atoms are $1.950(3)$ and $1.954(2) \AA$. They are shorter than those between chromium and nitrogen atoms of the macrocycle. The IR spectra of $\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ display bands at $1560\{v(\mathrm{C}=\mathrm{O})\}, 1710$ $\left\{v_{\mathrm{as}}(\mathrm{OCO})\right\}$ and $1660 \mathrm{~cm}^{-1}\left\{v_{\mathrm{as}}(\mathrm{OCO})\right\}$ attributed to the acac, ox and mal auxiliary ligands stretching vibrations, respectively.

Key Words : Macrocyclic Cr(III) complex, Acetylacetonato ligand, Crystal structure, Electronic absorption spectra

Introduction

The field of the macrocyclic chemistry of transition metals is developing very rapidly because of its applications ${ }^{1}$ and importance in the area of coordination chemistry. ${ }^{2}$ Macrocyclic ligand systems often exhibit unusual properties and sometimes mimic related natural macrocyclic compounds. There is currently considerable interest in complexes of polydentate macrocyclic ligands because of the variety of geometrical forms available and the possible encapsulation of the metal ion. ${ }^{3}$
Likewise, macrocyclic Schiff base ligands have received special attention because of their mixed hard-soft donor character and versatile coordination behavior, ${ }^{4,5}$ and for their biological activities, i.e. toxicity against bacterial growth, ${ }^{6}$ anticancerous ${ }^{7}$ and other biochemical properties. ${ }^{8,9}$

The reduction of the carcinogen and mutagen chromate by cellular reductants results in the trapping of $\mathrm{Cr}(\mathrm{III})$ inside cells; a portion of this chromium is in the form of $\mathrm{Cr}(\mathrm{III})$ DNA adducts. ${ }^{10}$ The significance of these adducts in the carcinogenic and mutagenic potential of chromate is currently highly debated. ${ }^{11}$ At low concentrations, $\mathrm{Cr}(\mathrm{III})$ binds preferentially to guanine-rich segments of DNA^{12} and appears to bind primarily to guanine bases through N-7 and to PO2 groups of the backbone of DNA as shown by difference FT-IR spectra. ${ }^{13}$ A more direct spectroscopic probe of Cr (III)-guanine complexes would be highly
desirable.
β-Diketones and related derivatives are considered a class of very important ligands in the growth of coordination chemistry. Due to presence of two oxygen donor atoms and facile keto-enol tautomerism they easily coordinate with metal ions after deprotonating the enolic hydrogen atom and provide stable metal complexes with six- membered chelate rings. ${ }^{14}$

Due to the weak metal-oxygen bond usually found in metal acetylacetonates, a relatively stronger ligand can replace the acetylacetonato group to give a new type of complex. Replacement of one or both acetylacetonato groups depends upon the ligand to metal acetylacetonates $\left\{\right.$ e.g. $\left.\left[\mathrm{MO}_{2}(\mathrm{acac})_{2}\right], \mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{U}\right\}$ ratio taken, number of donating groups present in the ligand and electronic as well as steric properties of the ligand replacing acetylacetonato group. In this way metal acetylacetonates can act as starting materials to design various types of complexes with varying structural and chemical properties. ${ }^{15}$

The history of oxalates in coordination chemistry is long and a renewed interest can be noted in recent years. ${ }^{16,17}$ The reason is the bis-chelating capability of the oxalates in combination with current efforts to prepare molecular based materials with higher dimensionality. ${ }^{18,19}$

And many recent reports have focused on the synthsis and structural characterization of polymeric transition metal compounds using malonate ${ }^{20}$ or $2,2^{\prime}$-bipyrimidine ${ }^{21}$ as
blocking and bridging ligands. The use of malonate as bridging ligand in copper(II) complexes has shown versatility of this dicarboxylate type ligand. ${ }^{22}$ The variety of coordination modes of the malonate ligand accounts for the structural complexity of the malonate complexes. The ability of the carboxylato bridge to mediate significant ferro- or antiferromagnetic coupling between the paramagnetic centers enhances the interest in the malonate ligand, aiming at designing extended magnetic systems. ${ }^{23}$
The copper complexes of macrocyclic ligand $\left(\mathrm{L}_{\mathrm{m}}=\right.$ trans-5,7,12,14-tetramethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecane) has recently been the subject of several chemical and structural studies. ${ }^{24-27}$ This ligand forms square planar complex with the copper(II) ion, $\left[\mathrm{Cu}\left(\mathrm{L}_{\mathrm{m}}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, which provides a rare example of square planar coordination of tetraazamacrocyclic copper(II) complexes. ${ }^{24,25}$ It has been suggested that the axially oriented methyl groups prevent the coordination of solvent or counter ion ClO_{4}^{-}to the metal ion. ${ }^{25}$ However, there is plenty of space for coordination of small auxiliary ligands such as $\mathrm{NCS}^{-}, \mathrm{N}_{3}{ }^{-}$or NO to the axial positions resulting in the formation of five- or six-coordinate copper complexes.

In addition the cobalt(III) complexes with tetraazamacrocyclic ligands exist in the cis and trans configurations; only cis complexes have been observed in the presence of bidentate auxiliary ligands such as ethylenediamine or oxalate. ${ }^{28}$ Very few crystal structures of cobalt-cyclam complexes have been reported. ${ }^{29}$

Currently only limited synthetic work has been carried out on chromium(III) complexes of macrocyclic ligand, rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (= [14]-decane) and 1,4,8,11-tetraazacyclotetradecane (cyclam) containing auxiliary ligands. House et al. have described the preparation of a variety of $\mathrm{Cr}(\mathrm{III})$ complexes, cis- $\left[\mathrm{Cr}([14]\right.$-decane $\left.)\left(\mathrm{L}_{\mathrm{a}}\right)_{2}\right] \mathrm{L}_{\mathrm{a}}\left(\mathrm{L}_{\mathrm{a}}=\mathrm{NCS}^{-}, \mathrm{Br}^{-}\right.$and $\left.\mathrm{N}_{3}{ }^{-}\right)$of $\mathrm{C}-$ meso and C-racemic diastereoisomers. C-racemic type readily folds to give cis-complexes with the ($R R R R$, SSSS)
sec-NH configuration and two equatorial and one axial methyl substituent on each six-membered chelate ring. ${ }^{30,31}$ Eriksen et al. have recently attempted to characterize the complex formation between carboxylic acids/carboxylates, in particular acetic acid/acetate and cis-[Cr([14]-decane)$\left.(\mathrm{Cl})_{2}\right] \mathrm{Cl}^{32}$ To our knowledge, few crystal structures of the $\mathrm{Cr}(\mathrm{III})$ complexes, cis- $\left[\mathrm{Cr}([14]\right.$-decane $\left.)\left(\mathrm{L}_{a}\right)_{m}\right]\left(\mathrm{ClO}_{4}\right)_{n}\left(\mathrm{~L}_{a}=\right.$ auxiliary ligand) have been reported. ${ }^{33}$ These patterns have led us to discuss physicochemical characterization and Xray crystal structure of the type cis-[$\operatorname{Cr}([14]$-decane $)$ $\left.\left(\mathrm{L}_{\mathrm{a}}\right)_{m}\right]\left(\mathrm{ClO}_{4}\right)_{n}$.

For some time we have been interested in the coordination chemistry of polydentate ligands. Recently we reported the preparation and characterization of several cis-[$\mathrm{Cr}([14]-$ decane $\left.)\left(\mathrm{L}_{\mathrm{a}}\right)_{m}\right]\left(\mathrm{ClO}_{4}\right)_{n}$ complexes containing auxiliary ligands such as benzoate, chlorobenzoate and citrate anions. ${ }^{33}$ In the light of above discussion, the present work concerns the synthesis and physicochemical characterization of a series of six-coordinate anion-bound $\operatorname{Cr}(\mathrm{III})$ complexes of the type cis- $\left[\mathrm{Cr}([14]\right.$-decane $\left.) \mathrm{L}_{\mathrm{a}}\right]\left(\mathrm{ClO}_{4}\right)_{n}\left(\mathrm{~L}_{\mathrm{a}}: n=1\right.$; ox, mal, and $n=$ 2; acac) (Scheme 1). And we also describe the crystal structure of cis-[$\mathrm{Cr}([14]-$ decane $)(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2}$ complex.

Experimental Section

General methods. All reagents and chemicals were purchased from commercial sources. Solvents used for electrochemical and spectroscopic studies were purified by standard procedures. Nanopure quality water was used throughout this work. cis- $\left[\mathrm{Cr}([14] \text {-decane })(\mathrm{OH})_{2}\right]^{+}$solution and the related compounds were prepared by literature methods. ${ }^{33}$

Microanalyses of C, H, and N were carried out using LECO CHN-900 analyzer. Conductance measurements of the complexes were performed in DMF at $25 \pm 1^{\circ} \mathrm{C}$ using an ORION 162 conductivity temperature meter. IR spectra were recorded with a Bruker FSS66 FT-IR spectrometer as

Scheme 1. Synthetic route of the $c i s-\left[\operatorname{Cr}([14]-\right.$ decane $\left.)\left(\mathrm{L}_{a}\right)\right]\left(\mathrm{ClO}_{4}\right)_{n}\left(\mathrm{~L}_{a}: n=1\right.$; ox, mal, and $n=2$; acac $)$.

KBr pellets. Electronic absorption spectra were measured at $25{ }^{\circ} \mathrm{C}$ on a HP model 8453 UV-VIS Spectrophotometer. FAB-mass spectra were obtained on a JEOL JMS-700 Mass Spectrometer using argon ($6 \mathrm{kV}, 10 \mathrm{~mA}$) as the FAB gas. The accelerating voltage was 10 kV and glycerol was used as the matrix. The mass spectrometer was operated in positive ion mode and mass spectra were calibrated by Alkali-CsI positive.
Synthesis of cis-[$\mathrm{Cr}([14]-$ decane $)(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2} \cdot(\mathbf{1} / 2)$ $\mathbf{H}_{2} \mathbf{O}$ (1). $4 \times 10^{-3} \mathrm{M}$ cis- $\left[\mathrm{Cr}([14] \text {-decane })(\mathrm{OH})_{2}\right]^{+}$solution $(10 \mathrm{~mL})$ and acetylacetone $(2 \mathrm{~mL})$ were mixed slowly with constant stirring overnight at room temperature. This solution was refluxed for 5 min in the presence of a saturated aqueous NaClO_{4} solution (4 mL). On cooling a pink colored precipitate formed, which was filtered, washed twice with water and ether, and dried in vacuo. Yield: 68%. Anal. Calcd (Found) \% for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Cr} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C}, 39.20$ (39.17); H, 6.89 (7.12); N, 8.71 (9.03). λ_{M} (DMF): 149 ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Synthesis of cis-[$\mathrm{Cr}([14]-$ decane $)(0 x)] \mathrm{ClO}_{4} \cdot(\mathbf{1} / \mathbf{2}) \mathrm{H}_{2} \mathrm{O}$ (2). To a freshly prepared $4 \times 10^{-3} \mathrm{M}$ cis-[$\mathrm{Cr}([14]$-decane)$\left.(\mathrm{OH})_{2}\right]^{+}$solution (10 mL), a solution of oxalic acid (2 g) in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was slowly added in small portions, followed by dropwise addition of a saturated aqueous NaClO_{4} solution $(4 \mathrm{~mL})$ with stirring, and solution was refluxed for 5 min . The resulting solution was allowed to stand in a refrigerator $\left(\sim 2{ }^{\circ} \mathrm{C}\right)$ until precipitates formed. The pink precipitates were filter, washed twice with ice-cold acetone, and dried in vacuo. Good quality crystals were obtained when the crude product was dissolved in the hot water $(120 \mathrm{~mL})$, followed by dropwise addition of a saturated aqueous NaClO_{4} solution $(12 \mathrm{~mL})$ with constant stirring, and the resulting solution was allowed to stand in a refrigerator ($\sim 2{ }^{\circ} \mathrm{C}$) until precipitates formed. Yield 84\%. Anal. Calcd (Found) \% for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{ClCr} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 40.57$ (40.60); H, 7.00 (7.27); $\mathrm{N}, 10.51$ (10.48). λ_{M} (DMF): $67.9 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Synthesis of cis-[$\mathbf{C r}([14]$-decane $)(\mathrm{mal})] \mathrm{ClO}_{4} \cdot(\mathbf{1} / 4) \mathrm{H}_{2} \mathrm{O}$ (3). A similar procedure as that for $\mathbf{2}$ was followed with a 12 mL aqueous solution of malonic acid (2 g). Yield: 41%. Anal. Calcd (Found) \% for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{ClCr} \cdot(1 / 4) \mathrm{H}_{2} \mathrm{O}$: C, 42.07 (42.09); H, 7.15 (6.97); N, 10.33 (10.32). λ_{M} (DMF): $70.3 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
X-ray crystallography of complex. Crystals of cis-$[\mathrm{Cr}([14]$-decane $)(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$ suitable for X-ray diffraction study were obtained by slow evaporation of acetonitrile : $\mathrm{H}_{2} \mathrm{O}(1: 1)$ solutions of the complex. A pink crystal of complex was mounted on a glass fiber and coated with epoxy resin. The single crystal data for the complex were collected on an Kappa CCD diffractometer equipped with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$). The crystallographic data, conditions for the collection of intensity data, and some features of the structure refinements are listed in Table 1. The intensity data were corrected for Lorentz and polarization effects. Absorption correction was not made during processing. Of the 6,975 unique reflections measured, 6,905 reflections in the range $1.35^{\circ} \leq 2 \theta \leq 27.48^{\circ}$ were considered to be

Table 1. Crystallographic data for $c i s-[\operatorname{Cr}([14]$-decane)(acac)]$\left(\mathrm{ClO}_{4}\right) \cdot \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$

observed $(I>2 \sigma(I))$ and were used in subsequent structure analysis. The structure was solved by the direct method, ${ }^{34}$ and refined by full-matrix least-squares refinement with use of the SHELXL-97 package program. ${ }^{35}$ All atoms of the monomeric chromium(III) complex were refined anisotropically. All the hydrogen atoms were first found in difference electron density maps, and then placed in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded. Selected bond lengths and bond angles are presented in Table 2 and 3, and the hydrogen bond lengths are given in Table 4.

Crystallographic data for the structure reported here have been deposited with Cambridge Crystallographic Data Center (Deposition No. CCDC 251035). The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Results and Discussion

Description of crystal structure. Only a few chromi-um(III)-tetraazacyclotetradecane complexes have been reported in the literature. ${ }^{36}$ To our knowledge, this is the first reported crystal structure of a cis-[Cr([14]-decane)(acac)]$\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$ complex containing auxiliary ligands, acac

Figure 1. ORTEP plot of the cis-[$\operatorname{Cr}([14]-$ decane $)(a c a c)]-$ $\left(\mathrm{ClO}_{4}\right) 2 \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$ complex.
ion. The structure and labeling scheme for a bidentate acetylacetonato complex cis-[Cr([14]-decane)(acac)]$\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$ is depicted in Figure 1. The crystal structure of this complex is made up of discrete cis-[$\mathrm{Cr}([14]-$ decane)(acac) $]^{2+}$ cation, ClO_{4}^{-}anions and uncoordinated water molecule which are held together by electrostatic forces, hydrogen bonds and Van der Waals interactions. These results are backed up by the elemental analysis and molar conductivity ($\lambda_{M}=149 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) which agreed with assignment of the structure as cis-[$\mathrm{Cr}([14]$-decane)(acac) $]\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$.
At monomeric cation cis- $[\mathrm{Cr}([14] \text {-decane })(\text { acac })]^{2+}$ chromium(III) ion is six-coordinated with the four secondary amines of the macrocycle and two acetylaceto-nate-oxygen atoms in cis position building a distorted octahedral environment. The oxygen atoms from the acac ligand and two nitrogen donors (positions of C-methyl group) of the [14]-decane define the equatorial coordination plane ($\mathrm{CrN}_{2} \mathrm{O}_{2} x y$-plane). Hexa-coordination is accomplished via the remaining two nitrogens of macrocyclic ligand (positions of C-dimethyl group) [I]. The tetra-aza ligand is folded along the $\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}(3)$ axis (axial position). This configuration is often referred to as the Bosnich type-V stereochemistry. ${ }^{37}$ A similar type of configuration was reported for cis- $[\mathrm{Cr}(\text { cyclam }) \mathrm{Cl}(\mathrm{dmso})]^{2+} .{ }^{38}$

[I]
The $\mathrm{Cr}-\mathrm{N}$ (secondary amines) bond distances are in the range of $2.107(3)-2.133(3) \AA,^{39,40}$ and Cr-O (acetylacetonate) distances are 1.950(3) and 1.954(2) (Table 2) which are
similar to that of $\left[\mathrm{Cu}(\mathrm{acac})(\right.$ phen $\left.)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{ClO}_{4}$ (phen $=$ $1,10$-phenanthroline) $)^{41}$ and $\left[\mathrm{Cu}(\mathrm{acac})_{2} \text { (quinoline) }\right]^{42} \mathrm{As}$ observed in $[\mathrm{Co}($ cyclam $)(\mathrm{acac})]\left(\mathrm{BF}_{4}\right) 2,{ }^{43}$ the average bond angles $\{84.12(12)\}$ of $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ of the five-membered chelate rings around the chromium(III) are smaller than those $\left\{89.04(13)^{\circ}\right\}$ of the six-membered ones (Table 3).
It is known that in cis octahedral complexes of macrocycles of medium size (12-14 membered rings) the pattern of metal-ligand distance and the angle between the axial donors and the metal center are particularly affected by the cavity size. ${ }^{44}$ In this complex $\mathrm{Cr}-\mathrm{N}\{2 ; 2.112(3) \AA\}$ and $\mathrm{Cr}-$ $\mathrm{N}\{4 ; 2.107(3) \AA\}$ distances are shorter than $\mathrm{Cr}-\mathrm{N}(1$, axial; $2.130(3) \AA$) and $\mathrm{Cr}-\mathrm{N}\{3$, axial; $2.133(3) \AA\}$ and the angle $\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}(3)\left\{169.49(12)^{\circ}\right\}$ is smaller than the ideal value of 180°, indicating that the donor atoms are not able to achieve the axial positions of a perfect octahedron. By contrast, in cis-[$\mathrm{Cr}($ cyclam $\left.) \mathrm{X}_{2}\right]$ octahedral complexes, the angle $\mathrm{N}_{\text {axial }}-\mathrm{Cr}-\mathrm{N}_{\text {axial }}$ is closer to 180° than that of the title complex and the axial and equatorial distances have similar values. ${ }^{39}$

In the coordinated environment of this complex, the longest $\mathrm{Cr}-\mathrm{N}$ (secondary amines) and the shortest $\mathrm{Cr}-\mathrm{O}$ bonds occupied cis-position. The $\mathrm{O}(1)-\mathrm{Cr}-\mathrm{N}(2)$ and $\mathrm{O}(2)$ -$\mathrm{Cr}-\mathrm{N}(4)$ linkages are slightly bent $\{174.56(12)$ and $\left.172.94(12)^{\circ}\right\}$, whereas the bond angles of $\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(2)$ and $\mathrm{O}(1)-\mathrm{Cr}-\mathrm{N}(3)$ are $89.85(11)$ and $99.95(12)^{\circ}$, respectively. The bidentate acetylacetonato ligand adopts the most stereochemically favorable orientation with respect to the macrocycle.

The delocalized C-C and C-O bond lengths for the acac chelate [II] in the title complex average 1.386(6) and 1.282(5) Å, respectively. The $\mathrm{C}-\mathrm{CH}_{3}$ bond lengths average $1.497(5) \AA$. The bond angles of $\mathrm{Cr}-\mathrm{O}(1)-\mathrm{C}(20), \mathrm{O}(1)-\mathrm{Cr}-$ $\mathrm{O}(2), \mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ and $\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(19)$ are 128.3 (2), 89.85(11), 124.2(3) and $124.9(3)^{\circ}$, respectively. These internal acac bond lengths and bond angles are in good agreement with those in related $\left[\mathrm{Ru}(\mathrm{acac})_{2}(S\right.$-BINAP $\left.)\right]\{S$ BINAP $=S$-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl $\}$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2}\right.$ (diene) $]$ complexes. ${ }^{45}$

[II]
Analysis of the crystal packing of the title complex in the unit cell shows that there exist multiple hydrogen bonding interactions, resulting in a three-dimensional supramolecular network (Figure 2). The selected bond lengths are given in Table 4. The perchlorate anion is linked to the complex cation by the hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ with the secondary amine hydrogens of the macrocycle $\{\mathrm{N}(2) \cdots$

Table 2. Selected bond lengths (\AA) for $\operatorname{cis}-[\operatorname{Cr}([14]$-decane)(acac)]$\left(\mathrm{ClO}_{4}\right) \cdot \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Cr}(1)-\mathrm{N}(1)$	$2.130(3)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.505(5)$
$\mathrm{Cr}(1)-\mathrm{N}(2)$	$2.112(3)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.381(6)$
$\mathrm{Cr}(1)-\mathrm{N}(3)$	$2.133(3)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.391(6)$
$\mathrm{Cr}(1)-\mathrm{N}(4)$	$2.107(3)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.489(5)$
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.950(3)$	$\mathrm{C}(18)-\mathrm{O}(2)$	$1.283(5)$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.954(2)$	$\mathrm{C}(20)-\mathrm{O}(1)$	$1.280(4)$

Table 3. Selected bond angles (${ }^{\circ}$) for $\operatorname{cis}-[\operatorname{Cr}([14]$-decane)(acac)]$\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$

$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{O}(1)$	$89.85(11)$	$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{N}(3)$	$88.76(12)$
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{N}(4)$	$172.94(12)$	$\mathrm{N}(2)-\mathrm{Cr}(1)-\mathrm{N}(3)$	$83.86(13)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{N}(4)$	$85.34(11)$	$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{N}(3)$	$169.49(12)$
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{N}(2)$	$86.46(12)$		
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{N}(2)$	$174.56(12)$	$\mathrm{C}(20)-\mathrm{O}(1)-\mathrm{Cr}(1)$	$128.3(2)$
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{N}(1)$	$100.60(12)$	$\mathrm{C}(18)-\mathrm{O}(2)-\mathrm{Cr}(1)$	$128.0(2)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{N}(1)$	$87.44(11)$	$\mathrm{O}(1)-\mathrm{C}(20)-\mathrm{C}(19)$	$124.5(3)$
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{N}(3)$	$86.98(12)$	$\mathrm{O}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$115.8(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{N}(3)$	$99.95(12)$	$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(19)$	$124.9(3)$
		$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(17)$	$115.3(4)$
$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{N}(2)$	$98.69(12)$	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$119.8(4)$
$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{N}(1)$	$84.37(12)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$124.2(3)$
$\mathrm{N}(2)-\mathrm{Cr}(1)-\mathrm{N}(1)$	$89.31(13)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.7(3)$

Table 4. Selected bond lengths (\AA) for hydrogen bond of cis-$[\mathrm{Cr}([14]$-decane $)(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right) 2 \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$

macrocycle-ClO			
4			
- ion			
$\mathrm{N}(2) \cdots \mathrm{O}(3) \# 1$	3.001	$\mathrm{~N}(4) \cdots \mathrm{O}(3) \# 1$	3.057
$\mathrm{~N}(3) \cdots \mathrm{O}(7)$	3.042	$\mathrm{~N}(1) \cdots \mathrm{O}(9) \# 2$	3.009

water molecule - water molecule
$\mathrm{Ow}(1) \cdots \mathrm{Ow}(1) \# 3 \quad 2.643$
Symmetry transformations used to generate equivalent atoms: \#1; x, y, $1+\mathrm{z}, \# 2 ; \mathrm{x}, \mathrm{y},-1+\mathrm{z}, \# 3 ; 1-\mathrm{x}, \mathrm{y},-1 / 2-\mathrm{z}$
$\mathrm{O}(3) ; 3.001 \AA, \mathrm{~N}(4) \cdots \mathrm{O}(3) ; 3.057 \AA, \mathrm{~N}(3) \cdots \mathrm{O}(7) ; 3.042 \AA$, $\mathrm{N}(1) \cdots \mathrm{O}(9) ; 3.009 \AA\}$. These hydrogen bonds consolidate the structure of the present complex. Another interesting feature of the title complex resides in the formation of a three-dimensional layered structure in which lattice $\mathrm{H}_{2} \mathrm{O}$ molecules present in the inter-layers. These uncoordinated waters form an intermolecular hydrogen bond $\{\mathrm{Ow}(1) \cdots$ $\operatorname{Ow}(1) ; 2.643 \AA\}$. In this lattice water connection it is interesting to compare the previous values reported for $\left[\mathrm{Cu}_{2} \mathrm{~L}_{\mathrm{c}}\left(\mathrm{N}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{L}_{\mathrm{c}}=\right.$ hexaaza macrocycle $)$ and $\left[\mathrm{Co}\right.$ (piperazine) $\left.{ }_{2} \mathrm{Cl}_{3}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{46,47}$
Electronic absorption spectra. The reaction of anhydrous chromium(III) chloride with [14]-decane gives a good yield of a bluish-green complex cis-[Cr([14]-decane)$\left.\mathrm{Cl}_{2}\right] \mathrm{Cl}^{48}$ Base hydrolysis of cis- $\mathrm{Cr}([14]$-decane $\left.) \mathrm{Cl}_{2}\right]^{+}$has been studied. ${ }^{30}$ The two moles of OH^{-}ion are consumed per mole of cis-[$\mathrm{Cr}([14]$-decane $\left.) \mathrm{Cl}_{2}\right]^{+}$complex in the pH range 7.8-9.4, and the final visible absorption spectrum is identical to that obtained from cis- $\left[\mathrm{Cr}([14]-\text { decane })(\mathrm{OH})_{2}\right]^{+}$solution. A DMF solution of cis-[Cr([14]-decane $\left.)(\mathrm{OH})_{2}\right] \mathrm{ClO}_{4}$ displayed a molar conductance of $71.4 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, which

Figure 2. The molecular packing diagram of cis-[$\mathrm{Cr}([14]-$ decane $)(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$ along with the hydrogen bonds, indicated by broken lines that contribute to stabilize the lattice.
is in the range of $1: 1$ electrolyte. This complex ion can be used to prepare a large variety of other complexes containing auxiliary ligands.

It shows that the absorption bands shift to shorter wavelength on addition of HClO_{4} solution to the aqueous cis- $\left[\mathrm{Cr}([14] \text {-decane })(\mathrm{OH})_{2}\right]^{+}$complex solution. The absorption spectrum of this species is compared with several related compounds $\left\{\right.$ cis $-\left[\{\operatorname{Cr}([14] \text {-decane })(\mu \text {-cit })\}_{2}\right]^{2+}$, cis-

Table 5. Electronic transition spectral data of cis-[Cr ([14]-decane)(acac) $]^{2+}$ and related $\mathrm{Cr}(\mathrm{III})$ complexes

Complexes	$\lambda, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	ref.
cis- $\left[\mathrm{Cr}(\text { cyclam }) \mathrm{Cl}_{2}\right]^{+}$	529 (111), 404 (106)	a, b
cis- $\left[\mathrm{Cr}(\text { cyclam })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$	483 (126), 370 (38)	a, b
cis- $\left[\mathrm{Cr}(\text { cyclam })\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)\right]^{3+}$	476 (110), 362 (87)	a, b
cis-[$\mathrm{Cr}($ cyclam $\left.)\left(\mathrm{NH}_{3}\right)_{2}\right]^{3+}$	468 (115), 355 (80)	a, b
cis-[$\mathrm{Cr}([14]$-decane $\left.)(\mathrm{OH})_{2}\right]^{+}$	609 (111), 380 (73)	b, c
cis- $\left[\mathrm{Cr}([14] \text {-decane })(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$	572 (130), 407 (53)	b, c
cis- $\left[\mathrm{Cr}([14] \text {-decane })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$	529 (169), 388 (82)	b, c
cis- $\left[\mathrm{Cr}([14] \text {-decane })(\mathrm{bz})_{2}\right]^{+*}$	550 (223), 392 (131)	b
cis- $\left[\mathrm{Cr}([14] \text {-decane })(\mathrm{cbz})_{2}\right]^{+*}$	547 (221), 394 (127)	b
cis- $\left[\{\mathrm{Cr}([14] \text {-decane })(\mu \text {-cit })\}_{2}\right]^{2+*}$	532 (186), 385 (97)	d
cis- $\left[\mathrm{Cr}([14] \text {-decane)(acac) }]^{2+}\right.$	536 (190), 388 (269)	this work
cis- $\left[\mathrm{Cr}\left([14]\right.\right.$-decane)(ox) ${ }^{+}$	533 (157), 386 (82)	this work
cis-[$\mathrm{Cr}\left([14]\right.$-decane)(mal)] ${ }^{+}$	551 (164), 387 (71)	this work
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d taken from ref. *Abbreviations, bz, cbz and cit are b respectively.	33, 48 and 61, zoate, chlorobenzoat	pectively. nd citrate,

$\left[\mathrm{Cr}([14] \text {-decane) (acac) }]^{2+}\right.$, cis- $[\mathrm{Cr}([14]-\text { decane })(\text { ox })]^{+}$, cis-$\left.[\mathrm{Cr}([14]-\text { decane })(\mathrm{mal})]^{+}\right\}$in Table 4. The first ligand field band $\left({ }^{4} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}} ; O_{h}\right.$ symmetry) of cis-[Cr([14]-decane)$\left.(\mathrm{OH})_{2}\right]^{+}$complex solution is observed at 609 nm , while the second LF band $\left({ }^{4} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}\right)$ is centered at $380 \mathrm{~nm} .{ }^{49,50}$ The molar absorptivities of the two $d-d$ bands are substantially greater than those of the trans analogues, consistent with the given geometric assignment.
The absorption spectrum of the cis- $\left[\mathrm{Cr}([14] \text {-decane)(ox) }]^{+}\right.$ complex ion in DMF solution at room temperature is represented in Figure 3. Using octahedral notation for 1, 2 and 3, the two absorption bands are assigned as ${ }^{4} A_{2 \mathrm{~g}} \rightarrow{ }^{4} T_{2 \mathrm{~g}}$ and ${ }^{4} A_{2 \mathrm{~g}} \rightarrow{ }^{4} T_{1 \mathrm{~g}}(\mathrm{~F}) .{ }^{50}$ There are overlapping absorption parts in the spectra of the title complexes including the two distinct bands. Three ligand field bands are expected for a d^{3} ion, ${ }^{4} A_{2 \mathrm{~g}} \rightarrow{ }^{4} T_{2 \mathrm{~g}}$ and ${ }^{4} A_{2 \mathrm{~g}} \rightarrow{ }^{4} T_{1 \mathrm{~g}}(\mathrm{~F})$ and the two electron transition ${ }^{4} A_{2 g} \rightarrow{ }^{4} T_{1 g}(\mathrm{P})$ in octahedral and pseudo octahedral symmetry. ${ }^{26}$ The two $d-d$ bands of title complexes observed at $\sim 18750, \sim 25900 \mathrm{~cm}^{-1}$ can be related to the spinallowed transitions, ${ }^{4} A_{2 \mathrm{~g}} \rightarrow{ }^{4} T_{2 \mathrm{~g}}$ and ${ }^{4} A_{2 \mathrm{~g}} \rightarrow{ }^{4} T_{1 \mathrm{~g}}$, respectively. ${ }^{51}$

In order to obtain some points of reference for the splitting of the two bands, the band profiles were fitted by using four Gaussian curves, as seen in Figure 3. Finally, we performed least-squares fitting procedures, and the dotted lines in Figure 3 are Gaussian bands representing the approximate deconvolution of the spectrum yielded by the calculations. The four peak positions calculated at $18158,19672,24205$ and $26481 \mathrm{~cm}^{-1}$ can be assigned to the ${ }^{4} \mathrm{E}\left({ }^{4} \mathrm{~T}_{2 \mathrm{~g}}\right.$ in O_{h} symmetry), ${ }^{4} \mathrm{~B}_{2}\left({ }^{4} \mathrm{~T}_{2 \mathrm{~g}}\right),{ }^{4} \mathrm{E}\left({ }^{4} \mathrm{~T}_{1 \mathrm{~g}}\right)$ and ${ }^{4} \mathrm{~A}_{2}\left({ }^{4} \mathrm{~T}_{1 \mathrm{~g}}\right)$, respectively. ${ }^{52,53}$ Similar procedures are also applied to cis-[Cr([14]-decane)(acac) $]^{2+}$ and $c i s-[\operatorname{Cr}([14] \text {-decane })(m a l)]^{+}$, taken 18032, 19438, 25444, $26477 \mathrm{~cm}^{-1}$ and 17460, 18839, 25012, 26290 cm^{-1}, respectively.
Infrared spectra. The infrared spectra of cis-[$\mathrm{Cr}([14]-$ decane) $($ acac $)]\left(\mathrm{ClO}_{4}\right)$, , cis-[$\mathrm{Cr}([14]$-decane $\left.)(\mathrm{ox})\right] \mathrm{ClO}_{4}$ and cis- $[\mathrm{Cr}([14]-$ decane $)(\mathrm{mal})] \mathrm{ClO}_{4}$ recorded at room temperature are presented in Figure 4. The infrared spectra of these

Figure 3. The electronic absorption spectrum of $2.0 \times 10^{-3} \mathrm{M}$ cis$[\mathrm{Cr}([14] \text {-decane })(\mathrm{ox})]^{+}$in DMF solution at 298 K .
complexes, taken from KBr pellet, are in accord with the structure determined by X-ray diffraction. The IR spectra displayed N-H stretches from 3220 to $3080 \mathrm{~cm}^{-1}$, C-H stretches from 2980 to $2890 \mathrm{~cm}^{-1}$, and a strong ionic ClO_{4}^{-} band at near $1100 \mathrm{~cm}^{-1}$ and $630 \mathrm{~cm}^{-1.51}$ The values of molar conductance for cis-[$\mathrm{Cr}([14]$-decane $)(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2}\left\{\lambda_{\mathrm{M}}\right.$ $\left.(\mathrm{DMF})=149 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right\}$, cis-[Cr([14]-decane)(ox)]$\mathrm{ClO}_{4}\left\{\lambda_{\mathrm{M}}(\mathrm{DMF})=67.9 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right\}$ and cis-[Cr([14]decane $)(\mathrm{mal})] \mathrm{ClO}_{4} \quad\left\{\lambda_{\mathrm{M}}(\mathrm{DMF})=70.3 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right\}$ measured in DMF correspond to a $1: 2$ (or $1: 1$) electrolyte, indicating that ClO_{4}^{-}ions in the $\mathrm{Cr}(\mathrm{III})$ complexes are counter anions. ${ }^{22,52}$

As in [II], acetylacetone coordinate to a metal atom through the oxygen atoms. In this enol type of complex, the band due to the C-O stretching vibration occurs at lower frequencies, usually $1605-1560 \mathrm{~cm}^{-1}$, than that due to the free acetylacetone $\mathrm{C}=\mathrm{O}$ stretching vibration which occurs at $1640 \mathrm{~cm}^{-1}$. A second strong band is observed near 1380 cm^{-1}. The band due to the $\mathrm{C}-\mathrm{H}$ stretching vibration tends to higher frequencies than might be expected because of the new benzene-type environment in which it is found. The bands due to C-C stretching vibrations for complexes are found at about 1540 and $1290 \mathrm{~cm}^{-1} .{ }^{54}$

The differences between the enol type acetylacetonate complexes (oxygen bound to metal) and the keto type (carbon bound) are as follow; (1) the γ carbon hydrogen stretching frequency is lower by about $150-100 \mathrm{~cm}^{-1}$ in the keto form, (2) bands due to the asymmetric and symmetric $\mathrm{C}=\mathrm{O}$ stretching vibrations appear at $1700-1650 \mathrm{~cm}^{-1}$ and $1650-1610 \mathrm{~cm}^{-1}$ respectively in the keto form, both bands being very strong, rather than the one at $1605-1560 \mathrm{~cm}^{-1}$ in the enol form. ${ }^{54}$

At the infrared spectrum for the title acac complex two peaks appearing in the 1560 and $1530 \mathrm{~cm}^{-1}$ assignable to the $v(\mathrm{C}=\mathrm{O})$ and $v(\mathrm{C}=\mathrm{C})$, respectively. ${ }^{55}$ The corresponding peaks for $\left[\mathrm{Cu}(\mathrm{acac})_{2}\right]$ were observed at ~ 1578 and ~ 1528 cm^{-1}, indicating that the π-systems of the acac ligand are somewhat disturbed in the mixed ligand complex as compared with those in $\left[\mathrm{Cu}(\mathrm{acac})_{2}\right]{ }^{55,56,57}$

For the oxalate ligand, various coordination modes via one, two, three or four oxygen atoms have been previously characterized. ${ }^{58}$ The presence of oxalate at the cis-[$\mathrm{Cr}([14]-$ decane)(ox) $]^{+}$accounts for the peaks at 1710 and $1680 \mathrm{~cm}^{-1}$ \{antisymmetric $v_{\text {as }}(\mathrm{OCO})$ vibration\} and bands at 1440 and $1380 \mathrm{~cm}^{-1}$ \{symmetric $v_{s}(\mathrm{OCO})$ vibration $\}$. The bending vibration corresponding to the $\delta(\mathrm{OCO})$ group is observed in the $1240 \mathrm{~cm}^{-1}$. The number of $v_{\mathrm{as}}(\mathrm{OCO})$ and $v_{\mathrm{s}}(\mathrm{OCO})$ carboxylate stretchings and the wavenumber gap $\{\Delta v=$ $v_{\mathrm{as}}(\mathrm{OCO})-v_{\mathrm{s}}(\mathrm{OCO})$ \}between them suggest the presence of chelating coordination modes of the oxalato ligand. ${ }^{33,59}$
Dealing with the malonate absorptions, the patterns of the antisymmetric $v_{\mathrm{as}}(\mathrm{OCO})\left(1660 \mathrm{~cm}^{-1}\right)$, symmetric $v_{\mathrm{s}}(\mathrm{OCO})$ (1430, $1360 \mathrm{~cm}^{-1}$) and bending $\delta(\mathrm{OCO})\left(1273 \mathrm{~cm}^{-1}\right)$ vibrations support the presence of chelating malonate in the title complex. ${ }^{60,61}$

FAB mass spectra. The FAB mass spectra of 1, 2 and 3 consist of peaks due to the molecular ions cis-[$\operatorname{Cr}([14]-$

Figure 4. IR spectra of (a) cis-[$\mathrm{Cr}([14]-$ decane $)($ ox $)] \mathrm{ClO}_{4} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$ and (b) cis-[Cr([14]-decane) (acac)] $\left(\mathrm{ClO}_{4}\right)_{2} \cdot(1 / 2) \mathrm{H}_{2} \mathrm{O}$.
decane)(acac) $]^{+}, \quad$ cis- $\left[\mathrm{Cr}([14] \text {-decane)(ox) }]^{+}\right.$and cis-$[\operatorname{Cr}([14]-\text { decane })(\mathrm{mal})]^{+}$, respectively. The molecular ions undergo fragmentation to give species such as cis-[$\mathrm{Cr}([14]-$ decane $)]^{+}, \quad$ cis- $-[\operatorname{Cr}([14] \text {-decane })]^{+}$and cis- $[\mathrm{Cr}([14]-$ decane) $]^{+}$. In the FAB mass spectra of $\mathbf{1 , 2}$ and $\mathbf{3}$ there is a peak at $m / z 434,424$ and 438 corresponding to the molecular ions, respectively. These major peaks are associated with peaks of mass one or two greater or less, which are attributed to protonated/deprotonated forms. This also accounts for the slight ambiguities in making assignments. ${ }^{33,61,62}$ The molecular ion of $\mathbf{1 , 2}$ and $\mathbf{3}$ gives peak due to $[\mathrm{Cr}([14]-$ decane) $]^{+}$at $m / z 336$.

References

1. Hosseni, M. W.; Lehn, J. M.; Duff, S. R.; Gu, K.; Mertes, M. P. J. Org. Chem. 1987, 52, 1662.
2. Izan, R. M.; Brandshaw, J. S.; Neilsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. Chem. Rev. 1985, 85, 271.
3. Shakir, M.; Varkey, S. P.; Namsmon, O. S. M. Polyhedron 1995, 14, 1283.
4. Maji, M.; Chatterjee, M.; Ghosh, S.; Chattopahyay, S. K.; Wu, B. M.; Mak, T. C. W. J. Chem. Soc. Dalton Trans. 1999, 135.
5. Sengupta, P.; Dinda, R.; Ghosh, S.; Sheldrick, W. S. Polyhedron 2003, 22, 447.
6. Pujar, M. A.; Hadimani, B. S.; Gaddad, S. M.; Neelgund, Y. F. Curr. Sci. 1986, 55, 353.
7. Mishra, L.; Jha, A.; Yadav, A. K. Trans. Met. Chem. 1977, 22, 406.
8. Mishra, L. J. Ind. Chem. Soc. 1999, 76, 175.
9. David, A. B.; Andrew, L. R. Inorg. Chem. 1983, 22, 2199.
10. DeFlora, S.; Wetterhahn, K. E. Life Chem. Rep. 1989, 7, 169.
11. Salnikow, K.; Zhitkovich, A.; Costa, M. Carcinogenesis 1992, 13, 2341.
12. Wolf, T. H.; Kasemann, R.; Ottenwalder, H. Carcinogenesis 1989, 10, 655.
13. Arakawa, H.; Ahmad, R.; Naoui, M. J. Biol. Chem. 2000, 275, 10150.
14. Maurya, M. R. Coord. Chem. Rev. 2003, 237, 163.
15. (a) Maurya, M. R.; Maurya, R. C. Rev. Inorg. Chem. 1995, 15, 1. (b) Maurya, M. A.; Bharti, N. Trans. Met. Chem. 1999, 24, 389.
16. Berezovsky, F.; Hajem, A. A.; Pala, J. S.; Molinie, P. Inorg. Chem. Acta 1999, 284, 8.
17. Akhriff, Y.; Sancho, A.; Folgado, J. V.; Soto, L. Inorg. Chem. 1999, 38, 1174.
18. Decurtins, S.; Schmalle, H. W.; Hauser, A. Inorg. Chem. 1996, 35, 1451.
19. Mathoniere, C.; Nuttall, C. J.; Carling, S. G.; Day, P. Inorg. Chem. 1996, 35, 1201.
20. Ruiz-Pérez, C.; Hernández-Molina, M.; Lloret, F.; Cano, J.; Julve, M. Inorg. Chem. 2000, 39, 3845.
21. Cstro, I.; Sletten, J.; Cano, J.; Julve, M. J. Chem. Soc. Dalton Trans. 1995, 3207.
22. Mautner, F. A.; Insausti, M.; Arriortua, M. I.; Rojo, T. Inorg. Chem. 1998, 37, 3243.
23. Colacio, E.; Kivekäs, R.; Moreno, J. M.; Romerosa, A.; Ruiz, J. Inorg. Chim. Acta 1993, 212, 115.
24. Bernhardt, P. V.; Sharpe, P. C. Inorg. Chem. 1998, 37, 1629.
25. Bernhardt, P. V.; Byriel, K. A.; Kennard, C. H. L.; Sharpe, P. C. J. Chem. Soc. Dalton Trans. 1996, 145.
26. Bernhardt, P. V.; Bramely, R.; Engelhardt, L. M.; Harrowfield, J. M.; Hockless, D. C.; Krausz, E. R.; Morgan, T.; Sargeson, A. M.; Sketon, B. W.; White, A. H. Inorg. Chem. 1995, 34, 3589.
27. Bernhardt, P. V. Inorg. Chem. 1999, 38, 3481.
28. Simon, E.; Haridon, P. L.; Pichon, R.; Her, M. L. Inorg. Chim. Acta 1998, 282, 173.
29. Solvilj, S. P.; Vuckovic, G.; Babic, K.; Matsumoyo, N.; Jovanic, V. M. J. Coord. Chem. 1994, 31, 167.
30. (a) House, D. A.; Hay, R. W.; Ali, M. A. Inorg. Chim. Acta 1983, 72, 239. (b) Watson, A.; House, D. A. Inorg. Chim. Acta 1985, 97, L45.
31. Choi, J. H. Spectrochim. Acta, Part A 2000, 56, 1653.
32. Eriksen, J.; Mönsted, L.; Mönsted, O. Inorg. Chim. Acta 2002, 337, 143.
33. Byun, J. C.; Han, C. H. Bull. Korean Chem. Soc. 2004, 25, 977.
34. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.
35. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997.
36. Malcoim, A. D. L.; Xianhui, B.; Peter, C. F. Inorg. Chim. Acta 2000, 300-302, 944
37. Bosnich, B.; Poon, C. K.; Tobe, M. L. Inorg. Chem. 1965, 4, 1102.
38. Felix, V.; Santos, T. M.; Calhorda, M. J. Inorg. Chim. Acta 2003, 356, 335.
39. House, D. A.; Steel, P. J. Inorg. Chim. Acta 1998, 269, 229.
40. Choi, J. H.; Suzuki, T.; Subhan, M. A.; Kaizaki, S.; Park, Y. C. Acta Cryst. 2002, C58, m409.
41. Su, C. C.; Wu, S. P.; Chang, T. Y. Polyhedron 1995, 14, 267.
42. Jose, P.; Ooi, S.; Fernando, Q. J. Inorg. Nucl. Chem. 1969, 31, 1971.
43. Simon, E.; Haridon, P. L.; Pichon, R.; Her, M. L. Inorg. Chim. Acta 1998, 282, 173.
44. Hodgson, D. J.; Pedersen, E.; Toftlund, H.; Weiss, C. Inorg. Chim. Acta 1986, 120, 177.
45. Chan, A. S.; Laneman, S. A.; Day, C. X. Inorg. Chim. Acta 1995, 228, 159.
46. Li, S. A.; Li, D. F.; Duan, C. Y.; Tang, W. X. Inorg. Chem. Comm. 2001, 4, 651.
47. Zhao, X. J.; Du, M.; Wang, Y.; Bu, X. H. J. Mol. Struc. 2004, 692, 155
48. Eriksen, J.; Mönsted, O. Acta Chem. Scand. 1983, A37, 579.
49. (a) Ferguson, J.; Tobe, M. L. Inorg. Chim. Acta 1970, 4, 109. (b) Kane-Maguire, N. A. P.; Kevin, C. W.; David, B. M. Inorg. Chem. 1985, 24, 597.
50. El-Shahawi, M. S. Spectrochim. Acta, Part A 1996, 52, 139.
51. El-Shahawi, M. S. Spectrochim. Acta 1995, 51A, 161.
52. Ueki, S.; Yamauchi, J. Inorg. Chim. Acta 2002, 338, 13.
53. Choi, J. H.; Linder, R.; Schönherr, T. Chemical Physics 2004, 297, 7.
54. Socrates, G. Infrared and Raman Characteristic Group Frequencies,
$3^{\text {rd }}$ ed; John Wiley \& Sons: New York, 2001.
55. Su, C. C.; Wu, S. P.; Wu, C. Y.; Chang, T. Y. Polyhedron 1995, 14, 267.
56. Paulovicova, A.; El-Ayaan, U.; Fukuda, Y. Inorg. Chim. Acta 2001, 321, 56.
57. Tayyari, S. F.; Raissi, H.; Ahmadabadi, Z. Spectrochim. Acta, Part A 2002, 58, 2669.
58. Andruh, M.; Melanson, R.; Stager, C. V.; Rochon, F. D. Inorg.

Chim. Acta 1996, 251, 309
59. Lescouëzec, R.; Marinescu, G.; Andruh, M.; Julve, M. Inorg. Chim. Acta 2003, 350, 131.
60. Taha, A. Spectrochim. Acta, Part A 2003, 59, 1373.
61. Byun, J. C.; Han, C. H. Bull. Korean Chem. Soc. 2005, 26, 634.
62. Fujino, T.; Hoshino, Y.; Igarashi, S.; Masuda, Y.; Yukawa, Y. Inorg. Chim. Acta 2004, 357, 11.

